
CSE 332 Winter 2024
Lecture 2: Algorithm Analysis

pt.1
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Terminology

• Abstract Data Type (ADT)
• Mathematical description of a “thing” with set of operations on that “thing”

• Algorithm
• A high level, language-independent description of a step-by-step process

• Data structure
• A specific organization of data and family of algorithms for implementing an

ADT

• Implementation of a data structure
• A specific implementation in a specific language

ADT: Queue

• What is it?
• A “First In First Out” (FIFO) collection of items

• What Operations do we need?
• Enqueue

• Add a new item to the queue

• Dequeue
• Remove the “oldest” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

Linked List – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” variable referencing the oldest item
• A “back” variable referencing the most recent item
• Each item points to the item enqueued after it

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

8 3 4 75Front

Back

Linked List – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” variable referencing the oldest item
• A “back” variable referencing the most recent item
• Each item points to the item enqueued after it

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

8 3 4 75Front

Back

enqueue(x){
 last = new Node(x)
 back.next = last
 back = last
}

dequeue(){
 first = front.item
 front = front.next
 return first
}

is_empty(){
 return front.equals(Null)
}

Circular Array – Queue Data Structure

• Queue represented as a “chain” of items
• A “front” variable referencing the oldest item
• A “back” variable referencing the most recent item
• Each item points to the item enqueued after it

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

8 3 4 75Front

Back

4 5 6 7321 80 9

Circular Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

74385
Front=0

Back=4

4 5 6 7321 80 9

Circular Array – Queue Data Structure

• Queue represented as an array of items
• A “front” index to indicate the oldest item in the queue

• A “back” index to indicate the most recent item in the queue

• Enqueue Procedure:

• Dequeue Procedure:

• Is_empty Procedure:

74385
Front=0

Back=4

enqueue(x){
 queue[back] = x
 back = (back + 1) % queue.length
}
dequeue(){
 first = queue[front]
 front = (front + 1) % queue.length
}
is_empty(){
 return front == back
}

Linked List vs. Circular Array

Warm up:
• I have a pile of string
• I have one end of the string in-hand
• I need to find the other end in the pile
• How can I do this efficiently?

Algorithm Ideas

11

• Ideas:

Algorithm Running Times

• How do we express running time?

• Units of “time”

• How to express efficiency?

12

My Approach

13

End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connects to
the beginning (call it pile A, the other pile B)

4. Count the number of strands crossing the piles

5. If the count is even, pile A contains the end, else pile B does

Repeat on
pile with end

A
B

14

Why Do resource Analysis?

• Allows us to compare algorithms, not implementations
• Using observations necessarily couples the algorithm with its implementation

• If my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

• We can predict an algorithm’s running time before implementing

• Understand where the bottlenecks are in our algorithm

Goals for Algorithm Analysis

• Identify a function which maps the algorithm’s input size to a measure
of resources used
• Domain of the function: sizes of the input

• Number of characters in a string, number of items in a list, number of pixels in an image

• Codomain of the function: counts of resources used
• Number of times the algorithm adds two numbers together, number times the algorithm

does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time

• Important note: Make sure you know the “units” of your domain and
codomain!

Worst Case Analysis (in general)

• If an algorithm has a worst case resource complexity of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will use 𝑓(𝑛) “resources”

• I.e. 𝑓(𝑛) gives the maximum count of resources needed from among all
inputs of size 𝑛

Worst Case Running Time Analysis

• If an algorithm has a worst case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will do 𝑓(𝑛) “operations”

• I.e. 𝑓(𝑛) gives the maximum operation count from among all inputs of size 𝑛

Worst Case Space Analysis

• If an algorithm has a worst case space complexity of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will need 𝑓(𝑛) “memory units”

• I.e. 𝑓(𝑛) gives the maximum memory unit count from among all inputs of size 𝑛

Worst Case Running Time - ExamplemyFunction(List n){

b = 55 + 5;

c = b / 3;

b = c + 100;

for (i = 0; i < n.size(); i++) {

b++;

}

if (b % 2 == 0) {

c++;

}

else {

for (i = 0; i < n.size(); i++) {

c++;

}

}

return c;

}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Worst Case Running Time – Example 2
beAnnoying(List n){

List m = [];

for (i=0; i < n.size(); i++){

m.add(n[i]);

for (j=0; j< n.size(); j++){

print (“Hi, I’m annoying”);

}

}

return;

}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Worst Case Running Time – General Guide

• Add together the time of consecutive statements

• Loops: Sum up the time required through each iteration of the loop
• If each takes the same time, then [time per loop × number of iterations]

• Conditionals: Sum together the time to check the condition and time
of the slowest branch

• Function Calls: Time of the function’s body

• Recursion: Solve a recurrence relation

	Slide 1: CSE 332 Winter 2024 Lecture 2: Algorithm Analysis pt.1
	Slide 2: Terminology
	Slide 3: ADT: Queue
	Slide 4: Linked List – Queue Data Structure
	Slide 5: Linked List – Queue Data Structure
	Slide 6: Circular Array – Queue Data Structure
	Slide 7: Circular Array – Queue Data Structure
	Slide 8: Circular Array – Queue Data Structure
	Slide 9: Linked List vs. Circular Array
	Slide 10
	Slide 11: Algorithm Ideas
	Slide 12: Algorithm Running Times
	Slide 13: My Approach
	Slide 14: End-of-Yarn Finding
	Slide 15: Why Do resource Analysis?
	Slide 16: Goals for Algorithm Analysis
	Slide 17: Worst Case Analysis (in general)
	Slide 18: Worst Case Running Time Analysis
	Slide 19: Worst Case Space Analysis
	Slide 20: Worst Case Running Time - Example
	Slide 21: Worst Case Running Time – Example 2
	Slide 22: Worst Case Running Time – General Guide

