CSE 332 Winter 2024

Lecture ZZIQWCVJ

Nathan Brunelle
http://www.cs.uw.edu/332 7\

http://www.cs.uw.edu/332

Memory Sharing With JorkJoin

—

* Idea of ForkJoin:
* Reduce span by having many parallel tasks
* Each task is responsible for its own portion of the input/output
* If one task needs another’s result, use join() to ensure it uses the final answer

* This does not help when:

* Memory accessed by threads is mor unpredictable

* Threads are doing independent tasks using same resources (rather than
implementing the same algorithm) C—

Example: Shared Queue

Imagine two threads are both using the

enqueue(x){ — 2 same linked list based queue.
it (Z_I:ECk == nuﬂ){ What could go wrong?

=new Node(x);
front = back;
J h———

e
7}

else {
back.next = new Node(x); [/

back = back.next;
} oackn 29,

Concurrent Programming

\
* Concurrency:
e Correctl iCi managing access to shared resources across multiple
possibly-simultaneous tasks o

* Requires synchronization to avoid incorrec@multaneous access

e Use some way of[’jglgdd\ng/ other tasks from using a resource when another
modifies it or makes decisions based on its state

* That blocking task will free up the resource when it’s done

Warning:
C' Because we have no control over when threads are scheduled by the OS, even
correct implementations are highly (rﬁn;determinisﬁ/

* Errors are hard to reproduce, which complicates debuggin
E/ P , & P gging
—

>

Bank Account Example

* The following code implements a bank account object correctly for a synchronized situation
* Assume the initial balance is 150
C —

What Happens here?

class BankAccount { |
private |nt balance = 0; - > xfﬁjmggﬁ)
int getBaIance() { return balance; }
void setBalance(int x) { balance = x; } —
__—"~ void withdraw(int amount) { jl) &
int b = getBalance();
if (@amount > b) G)(/ <,
throw new WithdrawToolargeException(); /7 ‘o

setBalance(b —amount); } .
// other operations like deposit, etc.

Bank Account Example - Parallel

e Assume the initial balance is 150

class BankAccount { Thread 1:

private int balance = 0;
) _ /_‘7 withdraw(100);

int getBalance() { return balan

void setBalance(int x) { balance X; } ﬂjﬁ
VOI | w(int amount) { Thread 2:
Ljin%;_get\Balance ; |
= ' e (a ount > b) ,\> withdraw(75);

throw new WithdrawToolargeException();
/jsetBaIance(b amount); }
// other operations like deposit, etc.

* Due tw, a ttre/ad can be interrupted at any time
* Between any two lines of code

e Within a single line of code

* The sequence that operations occur across two threads is called an
interleaving

* Without doing anything else, we have no control over how different
threads might beinterleaved -

A “Good” Interleaving

e Assume the initial balance is 150

Thread 1: Thread 2:
withdraw(100); withdraw(75);
b

/

(amount > b)
throw new Exception();
setBalance(b — amount);

Se——

ﬁwt b = getBalance();

/NN

int b = getBalance();
if (@amount > b)
throw new Exception();
setBalance(b — amount);

A “Bad” Interleaving

e Assume the initia

0T

50
Thread 1: Thread 2:
withdraw(100); withdraw(75);
intb’f getBalance();
:/_ NP int b = getBalance();

S

D

if (@mount > b)

throw new Exception();
setBalance(b — amount);

P —

if (amount > b)
throw new Exception();
setBalance(b — amount);

e Py

e ———

S—

S 0

A Bad Fix

e Assume the initial balance is 150

class BankAccount {
private int balance = 0;
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

if (amount >£e‘ﬂ37alance()) \
throw new WithdrawToolargeException();

setBalance(getBalance() — amount); }
// other operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

\)

Thread 1:

withdraw(100);

Thread 2:

withdraw(75);

3 g\/\,\/)

Vs
=l

if (amount > getBalance())
throw new Exception();
getBalance()
/RN

setBalance(— amount);

if (amount > getBalance())
throw new Exception();

setBalance(getBalance() — amount);

7 §=

]

N\

oy
7

What we want — Mutual Exclusion
C = =

* While one thread is withdrawing from the account, we want to
exclude all other threads from also withdrawing

e Called mutual exclusion:

* One thread using a resource (here: a bank account) means another thread
must wait

* We call the area of code that we want to have mutual exclusion (only one

thread can be there at a time) a Z:ritical sectiognj.

* The programmer must implement critical sections!
N— _———
* |t requires programming language primitives to do correctly

A Bad attempt at Mutual Exclusion

class BankAccount {
private int balance = 0;
private Boolean busy = false;
int getBalance() { returf balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
/7 while (busy) { /* wait until not busy */ }
/%&
)lnt b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b — amount);
busy = false;}
// othér operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150

—

Thread 1:

withdraw(100);

Thread 2:

withdraw(75);

while (busy) { /* wait until not busy */}

-
busy = true;

int b = getBalance();

if (@amount > b)
throw new Exception();
setBalance(b — amount);

busy = false;

while (busy) { /* wait until not busy */ }

\

busy = true;

int b = getBalance();
if (amount > b)
throw new Exception();
setBalance(b — amount);
busy = false;

WV/)

Solution

* We need a construct from Java to do this
* One Solution — A Mutual Exclusion Lock (called a Mutex or Lock)

Pt I —
* We define M to be a ADT with operations:

* New:
* make a new lock, initially “not held”

. Acquire

. If lock ishot held, mark it as ”helij
* Thes s always do her in a way that cannot be interrupted!

* If lock is held, pause until it is marked as “not held”

* Release:
 Mark the lock as “not held”
_/

Almost Correct Bank Account Example

class BankAccount {
private int balance = 0;
private Lock Igk = new Lock();
int getBalance() { return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

ﬁLIR.acquire(L

int b = :
int getBalance();

if (amount > b) .

Questions:
1. What is the critical section?

2. What s the Error?

éhrow new M_citamio_o_LaLge.Emepnan_(_)Q

setBalance(b — amount);

_— Ik.release();}<d/ﬂ'
// other operations like deposit, etc.

Try...Finally

* Try Block:
ﬁ'CBo/dyEode that wm

* Finally Block:

ways runs once the program exits try block (whether due to a return,
exception, anything!)

Correct (but not Java) Bank Account Example

class BankAccount {

private int balance = 0; Questions:

private Lock Ick = new Lock(); 1. Should deposit have its own

. lock object, or the same one?
. L/ ’

int getBalance() { return balance; } 2. What about getBalance?

void EELBE—I&H%@LLD'C\X)/{ balance = x; } ; 3. What about setBalance?

void withdraw(int amount) {

try{
2

lk.acquire();
int b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
alance(b — anM_'/}\
— finally{i&release(); 1}

// other operations like deposit, etc.

A still “Bad” Interleaving

e Assume the initial balance is 150 QZ/
Thread 1: Thread 2: {

What’s wrong here...

class BankAccount {
private int balance = 0;
private Lock Ick = new Lock();
int setBalance(int x) {

try{
w
balance =
finally{ Ik.release();
void withdraw(int amount) {

try{
Zlk.ac uire

int b = getBalance();
if (amount > b)

Withdraw calls setBalance!

Withdraw can never finish because in
setBalance the lock will always be held!

— ow new WithdrawToolargeException();
— etBaIa;z:{m}

finally { Ik.release(); } }}

&‘Ri—en\traitiock (Recursive Lock)

* |dea:
/ L)]
* Once a thread has acquired a lock, future calls to acquire on the same lock
will not block progress -

* If the lock used in the previous slide is re-entrant, then it will work!

—_—

Re-entrant Lock Details

* A re-entrant lock (a.k.a. recursive lock)
recdrst

*)“Remembers{
* the thread (if any) that currently holds it
* acount of(lifs_’[that the thread holds it

* When the@c goes from not-held to held, the countis setto 0
* |f (code running in) the current ho alls acquire:

* it does not block

* it increments the count

* On release:
e if the countis >0, the count is decremented

e if the countis O, the lock becomes not-held
—

Java’s Re-entract Lock Class

e java.util.concurrent.locks.ReentrantLock

/

* Has methods lock() and unlock()

—

* Important to guarantee that lock is always released!!!

\
* Recommend something like this: \
myLock.lock();

try { // method body }
finally { myLock.unlock(); }

"/

How this looks in Java

java.util.concurrent.locks.ReentrantLock;

class BankAccount {
private int balance = 0;
private ReentrantLock Ick = new ReentrantLock();

int setBalance(int x) {
try{
lk.lock();
" balance = x; }
finally{ Ik.unlock(); } }
void withdraw(intamoun
try{
lk.lock();
int b = getBalance();
if (amount > b)
throw new WithdrawToolLargeException();

setBalance(b — amount); }
finally { Ik.unlock(); } }}

Java Synchronized Keyword

L —

* Syntactic sugar for re-entrant locks

* You can use the synchronized statement agn alternatlve to declaring a
ReentrantLock

o Syntax: wd(ﬁpression returning an/Objec /){M

* AnyObject can serve as a “lock”

* Primitive types (e.g. int) cannot serve as a lock

* Acquires a lock and blocks if necessary
* Once you get past the “{“, you have the lock

* Released the lock when you pass “}”

* Even in the cases of returning, exceptions, anything!
* Impossible to forget to release the lock

Back Account Using Synchronize (Attempt 1)

class BankAccount {
private int balance = 0;
private Object,lk = new Object);
int getBaIance/!(ﬁ\
synchronized,(lk) { return balance; }
} -
void setBalance(int x) {
synchronized (lk)[{ balance = x; }
}
void withdraw(int amount) {
synchronized (lk) {
int b~=getBalance();
if (amount > b)
throw new Exception();
setBalance(b — amount); } } // deposit would also use synchronized(lk)

Back Account Using Synchronize (Attempt 2)

clasg BankAccoupt {

private int balance = 0;
int getBalance() {
nchronized (this) { return balance; }

Since we have one lock per account regardless
of operation, it’s more intuitive to use the
account object itself as the lock!

synchronized (this) { balance = x;

void withdraw(int amount)¥
synchronized (this) {
int b = getBalance();
if (@amount > b)
throw new Exception();
setBalance(b — amount); } } // deposit would also use synchronized(lk)

More Syntactic Sugar!

e Using the object itself as a lock is common enough that Java has
convenient syntax for that as well!

* Declaring a method as “synchronized” puts its body into a
synchronized block with “this” as the lock

Back Account Using Synchronize (Final)

class BankAccount {

private int balance = 0;

_——>> Sync

SyNc
SyNnc

nronized int getBaIance@rn bz@

nronized void setBalance(int x) { balance = x; }

nronized void withdraw(int amount) {
int b = getBalance();
if (amount > b)
throw new WithdrawToolargeException();
setBalance(b —amount); }

// other operations like deposit (which would use synchronized)

Race Condition

* Occurs when the computation result depends on scheduling (how
threads are interleaved)

* We, as programmers can’t influence scheduling of threads
* We need to write programs that work independent of scheduling

* Data Race:
* When there is the potential for two threads to be writing a variable in parallel
* When there is the potential for one thread to be reading a variable while
another writes to it
* Bad Interleaving:
* A race condition other than a data race
» Usually it looks like exposing a “bad” intermediate state

Example: Shared Stack (no problems so far)

class Stack {

private E[] array = (E[])new Object[SIZE];

private int index = -1;

synchronized boolean isEmpty() {
return index==-1;

}

synchronized void push(E val) {
array[++index] = val;

}

Critical sections of this code?

synchronized E pop() {
if(isEmpty())
throw new StackEmptyException();
return array[index--];

I8

Race Condition, but no Data Race

class Stack {
private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }
synchronized E pop() { ... }

E peek(){
E ans = pop(); Critical sections of this code?
push(ans);

return ans;

Race Condition, including a Data Race

class Stack {

private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }
synchronized E pop() { ... }
E peek(){

System.out.printin(index);

E ans = pop();

push(ans);

return ans;

Expected Behavior:

: Thread 2 should not see an empty stack if
Peek and ISEmpty there is a push but no pop.

Thread 1: Thread 2:

Expected Behavior:

Thread 2 items from a stack are popped in
Peek and Push [hresd 2

Thread 1: Thread 2:

Expected Behavior:

Thread 2 items from a stack are popped in
Peek and Pop

Thread 1: Thread 2:

How to fix this?

class Stack {
private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }
synchronized E pop() { ... }

E peek(){
E ans = pop();
push(ans);

return ans;

Make a bigger critical section

How to fix this?

class Stack

private E[] array = (E[])new Object[SIZE];

{

private int index = -1;

sync
Sync
sync
SyNnc

nronized boolean isEmpty() { ... }
hronized void push(E val) { ... }
hronized E pop() { ... }

nronized E peek(){
E ans = pop();
push(ans);
return ans;

Make a bigger critical section

Did this fix it?

class Stack {
private E[] array = (E[])new Object[SIZE];
private int index = -1;
synchronized boolean isEmpty() { ... }
synchronized void push(E val) { ... }

synchronized E pop() { ... }
E peek(){
return array[index];

No! Now it has a data race!

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:
1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever
write to it

3. Shared and Mutable: There is just one copy, it may change
* Requires Synchronization!

Thread Local Memory

* Whenever possible, avoid sharing resources

* Dodges all race conditions, since no other threads can touch it!
* No synchronization necessary! (Remember Ahmdal’s law)

* Use whenever threads do not need to communicate using the
resource

* E.g., each thread should have its on Random object

* In most cases, most objects should be in this category

Immutable Objects

* Whenever possible, avoid changing objects
* Make new objects instead

* Parallel reads are not data races
* |f an object is never written to, no synchronization necessary!

* Many programmers over-use mutation, minimize it

Shared and Mutable Objects

* For everything else, use locks

* Avoid all data races
* Every read and write should be projected with a lock, even if it “seems safe”
* Almost every Java/C program with a data race is wrong

* Even without data races, it still may be incorrect
* Watch for bad interleavings as well!

Consistent Locking

* For each location needing synchronization, have a lock that is always
held when reading or writing the location

* The same lock can (and often should) “guard” multiple fields/objects

e Clearly document what each lock guards!
* In Java, the lock should usually be the object itself (i.e. “this”)

* Have a mapping between memory locations and lock objects and
stick to it!

o *5° e

Lock Granularity

* Coarse Grained: Fewer locks guarding more things each
* One lock for an entire data structure
* One lock shared by multiple objects (e.g. one lock for all bank accounts)

* Fine Grained: More locks guarding fewer things each
* One lock per data structure location (e.g. array index)
* One lock per object or per field in one object (e.g. one lock for each account)

* Note: there’s really a continuum between them...

Example: Separate Chaining Hashtable

e Coarse-grained: One lock for the entire hashtable

* Fine-grained: One lock for each bucket

* Which supports more parallelism in insert and find?
* Which makes rehashing easier?

 What happens if you want to have a size field?

Tradeoffs

* Coarse-Grained Locking:
» Simpler to implement and avoid race conditions

 Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

* Much easier for operations that modify data-structure shape

* Fine-Grained Locking:

* More simultaneous access (performance when coarse grained would lead to
unnecessary blocking)

e Can make multi-location operations more difficult: say, rotations in an AVL tree

* Guideline:
 Start with coarse-grained, make finer only as necessary to improve performance

Similar But Separate Issue: Critical Section
Granularity

* Coarse-grained

* For every method that needs a lock, put the entire method body in a lock
* Fine-grained

» Keep the lock only for the sections of code where it’s necessary

e Guideline:

* Try to structure code so that expensive operations (like I/0) can be done
outside of your critical section

e E.g., if you're trying to print all the values in a tree, maybe copy items into an
array inside your critical section, then print the array’s contents outside.

Atomicity

e Atomic: indivisible
* Atomic operation: one that should be thought of as a single step

* Some sequences of operations should behave as if they are one unit

* Between two operations you may need to avoid exposing an intermediate
state

* Usually ADT operations should be atomic

* You don’t want another thread trying to do an insert while another thread is rotating the
AVL tree

* Think first in terms of what operations need to be atomic
* Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

* Whenever possible, use built-in libraries!

* Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
* Especially true for concurrent data structures

* Use thread-safe data structures when available
e E.g.Java as ConcurrentHashMap

Deadlock

* Occurs when two or more threads are mutually blocking each other

* T1 is blocked by T2, which is blocked by T3, ..., Tnis blocked by T1
* A cycle of blocking

Bank Account

class BankAccount {

synchronized void withdraw(int amt) {...}

synchronized void deposit(int amt) {...}

synchronized void transferTo(int amt, BankAccount a) {
this.withdraw(amt);
a.deposit(amt);

The Deadlock

Thread 1:

x.transferTo(1,y);

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit

release lock for account y at end of transferTo

The Deadlock

Thread 1:

x.transferTo(1,y);

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

y.transferTo(1,x);

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

* Deadlocks occur when there are multiple locks necessary to complete a
task and different threads may obtain them in a different order

* Option 1:
* Have a coarser lock granularity
* E.g. one lock for ALL bank accounts

* Option 2:
* Have a finer critical section so that only one lock is needed at a time
* E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked
separately
* Option 3:
* Force the threads to always acquire the locks in the same order

* E.g. make transferTo acquire both locks before doing either the withdraw or deposit,
make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();
class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
synchronized(BANK){
this.withdraw(amt);
a.deposit(amt);

Option 2: Finer Critical Section

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
synchronized(this){
this.withdraw(amt);
}
synchronized(a){
a.deposit(amt);

}

Option 3: First Get All Locks In A Fixed Order

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
if (this.acctNum < a.acctNum){
synchronized(this){
synchronized(a){
this.withdraw(amt);
a.deposit(amt);

b1}
else {
synchronized(a){
synchronized(this){
this.withdraw(amt);
a.deposit(amt);
P

	Slide 1: CSE 332 Winter 2024 Lecture 22: Concurrency
	Slide 2: Memory Sharing With ForkJoin
	Slide 3: Example: Shared Queue
	Slide 4: Concurrent Programming
	Slide 5: Bank Account Example
	Slide 6: Bank Account Example - Parallel
	Slide 7: Interleaving
	Slide 8: A “Good” Interleaving
	Slide 9: A “Bad” Interleaving
	Slide 10: A Bad Fix
	Slide 11: A still “Bad” Interleaving
	Slide 12: What we want – Mutual Exclusion
	Slide 13: A Bad attempt at Mutual Exclusion
	Slide 14: A still “Bad” Interleaving
	Slide 15: Solution
	Slide 16: Almost Correct Bank Account Example
	Slide 17: Try…Finally
	Slide 18: Correct (but not Java) Bank Account Example
	Slide 19: A still “Bad” Interleaving
	Slide 20: What’s wrong here…
	Slide 21: Re-entrant Lock (Recursive Lock)
	Slide 22: Re-entrant Lock Details
	Slide 23: Java’s Re-entract Lock Class
	Slide 24: How this looks in Java
	Slide 25: Java Synchronized Keyword
	Slide 26: Back Account Using Synchronize (Attempt 1)
	Slide 27: Back Account Using Synchronize (Attempt 2)
	Slide 28: More Syntactic Sugar!
	Slide 29: Back Account Using Synchronize (Final)
	Slide 30: Race Condition
	Slide 31: Example: Shared Stack (no problems so far)
	Slide 32: Race Condition, but no Data Race
	Slide 33: Race Condition, including a Data Race
	Slide 34: Peek and isEmpty
	Slide 35: Peek and Push
	Slide 36: Peek and Pop
	Slide 37: How to fix this?
	Slide 38: How to fix this?
	Slide 39: Did this fix it?
	Slide 40: Parallel Code Conventional Wisdom
	Slide 41: Memory Categories
	Slide 42: Thread Local Memory
	Slide 43: Immutable Objects
	Slide 44: Shared and Mutable Objects
	Slide 45: Consistent Locking
	Slide 46: Lock Granularity
	Slide 47: Example: Separate Chaining Hashtable
	Slide 48: Tradeoffs
	Slide 49: Similar But Separate Issue: Critical Section Granularity
	Slide 50: Atomicity
	Slide 51: Use Pre-Tested Code
	Slide 52: Deadlock
	Slide 53: Bank Account
	Slide 54: The Deadlock
	Slide 55: The Deadlock
	Slide 56: Resolving Deadlocks
	Slide 57: Option 1: Coarser Locking
	Slide 58: Option 2: Finer Critical Section
	Slide 59: Option 3: First Get All Locks In A Fixed Order

