
CSE 332 Winter 2024
Lecture 18: Dijkstra’s, ForkJoin

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Single-Source Shortest Path

2

Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

1 6

13
2

10

12

8

15
203

6 5

Dijkstra’s Algorithm

• Input: graph with no negative edge weights, start node 𝑠, end node 𝑡

• Behavior: Start with node 𝑠, repeatedly go to the incomplete node
“nearest” to 𝑠, stop when

• Output:
• Distance from start to end

• Distance from start to every node

3

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

4

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

∞

∞

∞

∞

∞ ∞

∞

∞

Node Done?

0 F

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 ∞

2 ∞

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

5

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

∞

∞ ∞

∞

∞

Node Done?

0 T

1 F

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 ∞

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

6

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

∞

18

∞ ∞

∞

∞

Node Done?

0 T

1 T

2 F

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 ∞

4 18

5 ∞

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

7

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

15

18

13 ∞

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 F

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 15

4 18

5 13

6 ∞

7 ∞

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

8

Start: 0
End: 8

10

2

7

11

95

6

1

7

3

1

8

12

90

1

2

3

4

5
6

8

70

10

12

14

18

13 20

∞

∞

Node Done?

0 T

1 T

2 T

3 F

4 F

5 T

6 F

7 F

8 F

Node Distance

0 0

1 10

2 12

3 14

4 18

5 13

6 ∞

7 20

8 ∞

Idea: When a node is the closest
undiscovered thing to the start,
we have found its shortest path

Dijkstra’s Algorithm

9

int dijkstras(graph, start, end){
 distances = [∞, ∞, ∞,…]; // one index per node
 done = [False,False,False,…]; // one index per node
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 distances[start] = 0;
 while (!PQ.isEmpty){
 current = PQ.deleteMin();
 done[current] = true;
 for (neighbor : current.neighbors){
 if (!done[neighbor]){
 new_dist = distances[current]+weight(current,neighbor);
 if (distances[neighbor] == ∞) {PQ.insert(neighbor, new_dist);}
 if (new_dist < distances[neighbor]){
 distances[neighbor] = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return distances[end]
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Running Time

• How many total priority queue operations are necessary?
• How many times is each node added to the priority queue?

• How many times might a node’s priority be changed?

• What’s the running time of each priority queue operation?
• log |𝑉|

• Overall running time:
• Θ 𝐸 log 𝑉

10

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the priority queue, we have
found its shortest path

• Induction over number of completed nodes

• Base Case:

• Inductive Step:

11

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm: Correctness

• Claim: when a node is removed from the
priority queue, its distance is that of the
shortest path

• Induction over number of completed nodes

• Base Case: Only the start node removed
• It is indeed 0 away from itself

• Inductive Step:
• If we have correctly found shortest paths for the first
𝑘 nodes, then when we remove node 𝑘 + 1 we have
found its shortest path

12

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the
queue. What do we know bout 𝑎?

13

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

14

𝑠

𝑥

𝑦

𝑎

𝑏

Dijkstra’s Algorithm: Correctness

• Suppose 𝑎 is the next node removed from the queue.
• No other node incomplete node has a shorter path

discovered so far

• Claim: no undiscovered path to 𝑎 could be shorter
• Consider any other incomplete node 𝑏 that is 1 edge away

from a complete node

• 𝑎 is the closest node that is one away from a complete node

• No path from 𝑏 to 𝑎 can have negative weight

• Thus no path that includes 𝑏 can be a shorter path to 𝑎

• Therefore the shortest path to 𝑎 must use only complete
nodes, and therefore we have found it already!

15

𝑠

𝑥

𝑦

𝑎

𝑏

A Programming Assumption Reconsidered

• So far:
• Programs run by executing one line of code at a time in the order written

• Called Sequential Programming

• Removing this assumptions creates challenges and opportunities
• Programming: Divide computation across several parallel threads, then

coordinate (synchronize) across them.

• Algorithms: This parallel processing can speed up computation by increasing
throughput (operations done per unit time)

• Data Structures: May need to support concurrent access (multiple parallel
processes attempting to use it at once)

Why Parallelism?

• Pre 2005:
• Processors “naturally” got faster at an exponential rate (~2x faster every ~2

years)

• Since 2005:
• Some components cannot be improved in the same way due to limitations of

physics

• Solution: increase computing speed by just adding more processors

What to do with the extra processors?

• Time Slicing:
• Your computer is always keeping track of multiple things at once

• running the OS, rendering the display, running Powerpoint, autosaving a document, etc.

• Multiple processors allow for the multiple tasks to be spread across them, so
each processor dedicates more time to each one

• Parallelism (our focus):
• Multiple processors collaborate on the same task.

Parallelism Vs. Concurrency (with Potatoes)

• Sequential:
• The task is completed by just one processor doing one thing at a time

• There is one cook who peels all the potatoes

• Parallelism:
• One task being completed by may threads

• Recruit several cooks to peel a lot of potatoes faster

• Concurrency:
• Parallel tasks using a shared resource

• Several cooks are making their own recipes, but there is only 1 oven

New Story of Code Execution

• Old Story:
• One program counter (current statement executing)

• One call stack (with each stack frame holding local variables)

• Objects in the heap created by memory allocation (i.e., new)
• (nothing to do with data structure called a heap)

• New Story:
• Collection of threads each with its own:

• Program Counter

• Call Stack

• Local Variables

• References to objects in a shared heap

Old Story

Call Stack
Program Counter

Local Variables (primitives and
references to Heap objects)

Heap Containing Objects and
Static Fields

New Story
Threads, each with its own unshared:

Call Stack
Program Counter

Local Variables (primitives and references
to Heap objects)

Heap Containing Objects and
Static Fields

Needs from Our Programming Language

• A way to create multiple things running at once
• Threads

• Ways to share memory
• References to common objects

• Ways for threads to synchronize
• For now, just wait for other threads to finish their work

Parallelism Example (not real code)

• Goal: Find the sum of an array

• Idea: 4 processors will each find the
sum of one quarter of the array, then
we can add up those 4 results int sum(int[] arr){

 res = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 res[i] = sumRange(arr,i*len/4,(i+1)*len/4); }
 return res[0]+res[1]+res[2]+res[3];
}
int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j]; return result;
}

Note: This FORALL construct does not exist,
but it’s similar to how we’ll actually do it.

Java.lang.Thread

• To run a new thread:
1. Define a subclass C of java.lang.Thread, overriding run

2. Create an object of class C

3. Call that object’s start method
• start sets off a new thread, using run as its “main”

• Calling “run” directly causes the program to execute “run” sequentially

Back to Summing an Array

• Goal: Find the sum of an array

• Idea: 4 threads each find the sum of one quarter of the array

• Process:
• Create 4 thread objects, each given a portion of the work

• Call start() on each thread object to run it in parallel

• Wait for threads to finish using join()

• Add together their 4 answers for the final result

+

+ + + +

First Attempt (part 1, defining Thread Object)
class SumThread extends java.lang.Thread {

int lo; // fields, assigned in the constructor

int hi; // so threads know what to do.

int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {

lo=l; hi=h; arr=a;

}

public void run() { //override must have this type

for(int i=lo; i < hi; i++)

ans += arr[i];

}

First Attempt (part 2, Creating Thread Objects)
class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // fields to know what to do

int ans = 0; // result

SumThread(int[] a, int l, int h) { … }

public void run(){ … } // override }

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++) // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

for(int i=0; i < 4; i++) // combine results

ans += ts[i].ans;

return ans;

}

First Attempt (part 3, Running Thread Objects)
class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // fields to know what to do

int ans = 0; // result

SumThread(int[] a, int l, int h) { … }

public void run(){ … } // override }

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){ // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

ts[i].start(); // start not run}

for(int i=0; i < 4; i++) // combine results

ans += ts[i].ans;

return ans; }

First Attempt (part 4, Synchronizing)
class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // fields to know what to do

int ans = 0; // result

SumThread(int[] a, int l, int h) { … }

public void run(){ … } // override }

int sum(int[] arr){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++){ // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

ts[i].start(); // start not run}

for(int i=0; i < 4; i++) // combine results

ts[i].join(); // wait for thread to finish!

ans += ts[i].ans;

return ans; }

Join

• Causes program to pause until the other thread completes its run
method

• Avoids a race condition
• Without join the other thread’s ans field may not have its final answer yet

Flaws With this Attempt

int sum(int[] arr, int numTs){ // can be a static method

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[numTs];

for(int i=0; i < numTs; i++){ // do parallel computations

ts[i] = new SumThread(arr,i*len/numTs,(i+1)*len/numTs);

ts[i].start(); // start not run}

for(int i=0; i < numTs; i++) // combine results

ts[i].join(); // wait for thread to finish!

ans += ts[i].ans;

return ans; }

Different machines have different numbers
of processors!

Making the thread count a parameter
helps make your program more efficient
and reusable across computers

Flaws With this Attempt

• Even If we make the number of threads equal the number of
processors, the OS is doing time slicing, so we might not have all
processors available right now

• For some problems, not all subproblems will take the same amount of
time:
• E.g. determining whether all integers in an array are prime.

One Potential Solution: More Threads!

• Identify an “optimal” workload per thread
• E.g. maybe it’s not worth splitting the work if the array is shorter than 1000

• Split the array into chunks using this “sequential Cutoff”
• numTs = len/SEQ_CUTOFF;

• Problem: One process is still responsible for summing all len/1000
results
• Process is still linear time

A Better Solution: Divide and Conquer!

• Idea: Each thread checks its problem size. If its smaller than the
sequential cutoff, it will sum everything sequentially. Otherwise it will
split the problem in half across two separate threads.

Merge Sort
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return it

• Divide:
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

36

5

5 8 2 9 4 1

5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9

Parallel Sum
• Base Case:

• If the list’s length is smaller than the Sequential Cutoff, find the sum
sequentially

• Divide:
• Split the list into two “sublists” of (roughly) equal length, create a

thread to sum each sublist.

• Conquer:
• Call start() for each thread

• Combine:
• Sum together the answers from each thread

37

5

5 8 2

9 4 1

5 8 2 9 4 1

ans=14

ans=15

ans=29

Divide and Conquer with Threads
class SumThread extends java.lang.Thread {

public void run(){ // override

if(hi – lo < SEQUENTIAL_CUTOFF) // “base case”

for(int i=lo; i < hi; i++) ans += arr[i];

else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2); // divide

SumThread right= new SumThread(arr,(hi+lo)/2,hi); // divide

left.start(); // conquer

right.start(); // conquer

left.join(); // don’t move this up a line – why?

right.join();

ans = left.ans + right.ans; // combine

}

}

}

int sum(int[] arr){ // just make one thread!

SumThread t = new SumThread(arr,0,arr.length);

t.run();

return t.ans; }

Small optimization

• Instead of calling two separate threads for the two subproblems,
create one parallel thread (using start) and one sequential thread
(using run)

Divide and Conquer with Threads (optimized)
class SumThread extends java.lang.Thread {

public void run(){ // override

if(hi – lo < SEQUENTIAL_CUTOFF) // “base case”

for(int i=lo; i < hi; i++) ans += arr[i];

else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2); // divide

SumThread right= new SumThread(arr,(hi+lo)/2,hi); // divide

left.start(); // conquer

right.run(); // conquer

left.join(); // don’t move this up a line – why?

//right.join();

ans = left.ans + right.ans; // combine

}

}

}

int sum(int[] arr){ // just make one thread!

SumThread t = new SumThread(arr,0,arr.length);

t.run();

return t.ans; }

ForkJoin Framework

• This strategy is common enough that Java (and C++, and C#, and…)
provides a library to do it for you!

What you would do in Threads What to instead in ForkJoin

Subclass Thread Subclass RecursiveTask<V>

Override run Override compute

Store the answer in a field Return a V from compute

Call start Call fork

join synchronizes only join synchronizes and returns the answer

Call run to execute sequentially Call compute to execute sequentially

Have a topmost thread and call run Create a pool and call invoke

Divide and Conquer with ForkJoin
class SumTask extends RecursiveTask {

int lo; int hi; int[] arr; // fields to know what to do

SumTask(int[] a, int l, int h) { … }

protected Integer compute(){// return answer

if(hi – lo < SEQUENTIAL_CUTOFF) { // base case

int ans = 0; // local var, not a field

for(int i=lo; i < hi; i++) {

ans += arr[i]; return ans; }

else {

SumTask left = new SumTask(arr,lo,(hi+lo)/2); // divide

SumTask right= new SumTask(arr,(hi+lo)/2,hi); // divide

left.fork(); // fork a thread and calls compute (conquer)

int rightAns = right.compute(); //call compute directly (conquer)

int leftAns = left.join(); // get result from left

return leftAns + rightAns; // combine

}

}

}

Divide and Conquer with ForkJoin (continued)

static final ForkJoinPool POOL = new ForkJoinPool();

int sum(int[] arr){

SumTask task = new SumTask(arr,0,arr.length)

return POOL.invoke(task); // invoke returns the value compute returns

}

Section

• Working with examples of ForkJoin

• Make sure to bring your laptops!
• And charge it!

	Slide 1: CSE 332 Winter 2024 Lecture 18: Dijkstra’s, ForkJoin
	Slide 2: Single-Source Shortest Path
	Slide 3: Dijkstra’s Algorithm
	Slide 4: Dijkstra’s Algorithm
	Slide 5: Dijkstra’s Algorithm
	Slide 6: Dijkstra’s Algorithm
	Slide 7: Dijkstra’s Algorithm
	Slide 8: Dijkstra’s Algorithm
	Slide 9: Dijkstra’s Algorithm
	Slide 10: Dijkstra’s Algorithm: Running Time
	Slide 11: Dijkstra’s Algorithm: Correctness
	Slide 12: Dijkstra’s Algorithm: Correctness
	Slide 13: Dijkstra’s Algorithm: Correctness
	Slide 14: Dijkstra’s Algorithm: Correctness
	Slide 15: Dijkstra’s Algorithm: Correctness
	Slide 16: A Programming Assumption Reconsidered
	Slide 17: Why Parallelism?
	Slide 18: What to do with the extra processors?
	Slide 19: Parallelism Vs. Concurrency (with Potatoes)
	Slide 20: New Story of Code Execution
	Slide 21: Old Story
	Slide 22: New Story
	Slide 23: Needs from Our Programming Language
	Slide 24: Parallelism Example (not real code)
	Slide 25: Java.lang.Thread
	Slide 26: Back to Summing an Array
	Slide 27: First Attempt (part 1, defining Thread Object)
	Slide 28: First Attempt (part 2, Creating Thread Objects)
	Slide 29: First Attempt (part 3, Running Thread Objects)
	Slide 30: First Attempt (part 4, Synchronizing)
	Slide 31: Join
	Slide 32: Flaws With this Attempt
	Slide 33: Flaws With this Attempt
	Slide 34: One Potential Solution: More Threads!
	Slide 35: A Better Solution: Divide and Conquer!
	Slide 36: Merge Sort
	Slide 37: Parallel Sum
	Slide 38: Divide and Conquer with Threads
	Slide 39: Small optimization
	Slide 40: Divide and Conquer with Threads (optimized)
	Slide 41: ForkJoin Framework
	Slide 42: Divide and Conquer with ForkJoin
	Slide 43: Divide and Conquer with ForkJoin (continued)
	Slide 44: Section

