
CSE 332 Winter 2024
Lecture 16: Radix Sort, Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3

2
2
2

0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3

BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?

Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes!

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15

RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏𝑚 + 𝑏 log𝑏𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?

ARPANET

11

Undirected Graphs

12

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Directed Graphs

13

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

1

2

3

4

5

6
7

9

8

Self-Edges and Duplicate Edges

14

1

2

3

4

5

6
7

9

8

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

Weighted Graphs

15

10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Graph Applications
• For each application below, consider:

• What are the nodes, what are the edges?
• Is the graph directed?
• Is the graph simple?
• Is the graph weighted?

• Facebook friends
• Nodes = users, edges = friendships
• Undirected, friendship mutual
• Simple
• Maybe

• Twitter followers
• Nodes are users, edges = following
• Directed
• Simple,
• maybe

• Java inheritance
• Nodes: classes, edges = implements, extends
• Directed
• Simple
• no

• Airline Routes
• Cities, flights
• Directed
• Not simple

Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an

edge

• Degree
• Number of “neighbors” of a vertex

• Indegree
• Number of incoming neighbors

• Outdegree
• Number of outgoing neighbors

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)

Adjacency List

19

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency List (Weighted)

20

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ(?)

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix

21

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(?)
Add Edge: Θ(?)
Remove Edge: Θ(?)
Check if Edge Exists: Θ(?)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ ?

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix (weighted)

22

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

Definition: Path

24

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path which starts and
ends in the same place

Definition: (Strongly) Connected Graph

25

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Definition: (Strongly) Connected Graph

26

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Connected Not (strongly) Connected

Definition: Weakly Connected Graph

27

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
ignoring direction of edges

1

2

3

4

5

6
7

9

8

Weakly Connected

1

2

3

4

5

6
7

9

8

Weakly Connected

Definition: Complete Graph

28

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete
Undirected Graph

Complete
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed
Non-simple Graph

1 2

3 4

Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple:
|𝑉|(|𝑉|−1)

2

• Directed and simple: |𝑉|(|𝑉| − 1)

• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2 we say the graph is dense

• If 𝐸 ∈ Θ |𝑉| we say the graph is sparse

• Because 𝐸 is not always near to 𝑉 2 we do not typically substitute
𝑉 2 for 𝐸 in running times, but leave it as a separate variable

Definition: Tree

30

A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree

1

2

3

4

5

6
7

9

8

A Rooted Tree

1

2

3

4

56

7 9

8

Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors
of neighbors of 𝑠, …

• Output:
• How long is the shortest path?

• Is the graph connected?

31

1

2

3

4

5

6
7

9

8

BFS

32

void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

Shortest Path (unweighted)

33

int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Depth-First Search

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

35

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

36

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

DFS Recursively (more common)

37

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

	Slide 1: CSE 332 Winter 2024 Lecture 16: Radix Sort, Graphs
	Slide 2: “Linear Time” Sorting Algorithms
	Slide 3: BucketSort
	Slide 4: BucketSort Running Time
	Slide 5: Properties of BucketSort
	Slide 6: RadixSort
	Slide 7: RadixSort
	Slide 8: RadixSort
	Slide 9: RadixSort
	Slide 10: RadixSort Running Time
	Slide 11: ARPANET
	Slide 12: Undirected Graphs
	Slide 13: Directed Graphs
	Slide 14: Self-Edges and Duplicate Edges
	Slide 15: Weighted Graphs
	Slide 16: Graph Applications
	Slide 17: Some Graph Terms
	Slide 18: Graph Operations
	Slide 19: Adjacency List
	Slide 20: Adjacency List (Weighted)
	Slide 21: Adjacency Matrix
	Slide 22: Adjacency Matrix (weighted)
	Slide 23: Aside
	Slide 24: Definition: Path
	Slide 25: Definition: (Strongly) Connected Graph
	Slide 26: Definition: (Strongly) Connected Graph
	Slide 27: Definition: Weakly Connected Graph
	Slide 28: Definition: Complete Graph
	Slide 29: Graph Density, Data Structures, Efficiency
	Slide 30: Definition: Tree
	Slide 31: Breadth-First Search
	Slide 32: BFS
	Slide 33: Shortest Path (unweighted)
	Slide 34: Depth-First Search
	Slide 35: Depth-First Search
	Slide 36: DFS (non-recursive)
	Slide 37: DFS Recursively (more common)

