
CSE 332 Winter 2024
Lecture 15: Sorting

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Divide And Conquer Sorting

• Divide and Conquer:
• Recursive algorithm design technique

• Solve a large problem by breaking it up into smaller versions of the same
problem

Divide and Conquer
• Base Case:

• If the problem is “small” then solve directly and return

• Divide:
• Break the problem into subproblem(s), each smaller instances

• Conquer:
• Solve subproblem(s) recursively

• Combine:
• Use solutions to subproblems to solve original problem

3

A
B

Divide and Conquer Template Pseudocode
def my_DandC(problem){

// Base Case

if (problem.size() <= small_value){

return solve(problem); // directly solve (e.g., brute force)

}

// Divide

List subproblems = divide(problem);

// Conquer

solutions = new List();

for (sub : subproblems){

subsolution = my_DandC(sub);

solutions.add(subsolution);

}

// Combine

return combine(solutions);

} 4

Merge Sort
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return it

• Divide:
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

5

5

5 8 2 9 4 1

5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9

Merge Sort In Action!

5 8 2 9 4 1 3 7

Sort between indices 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

Base Case: if 𝑙𝑜𝑤 == ℎ𝑖𝑔ℎ then that range is already sorted!

Divide and Conquer: Otherwise call mergesort on ranges 𝑙𝑜𝑤,
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
 and

𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
+ 1, ℎ𝑖𝑔ℎ

5 8 2 9 4 1 3 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

After Recursion:

Merge (the combine part)

2 5 8 9 1 3 4 7

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2

𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ

2
+ 1

Create a new array to merge into, and 3 pointers/indices:
• L_next: the smallest “unmerged” thing on the left
• R_next: the smallest “unmerged” thing on the right
• M_next: where the next smallest thing goes in the merged array

One-by-one: put the smallest of L_next and R_next into M_next,
then advance both M_next and whichever of L/R was used.

Merge Sort Pseudocode
void mergesort(myArray){

ms_helper(myArray, 0, myArray.length());
}

void mshelper(myArray, low, high){

if (low == high){return;} // Base Case

mid = (low+high)/2;

ms_helper(low, mid);

ms_helper(mid+1, high);

merge(myArray, low, mid, high);

}
8

Merge Pseudocode
void merge(myArray, low, mid, high){

merged = new int[high-low+1]; // or whatever type is in myArray

l_next = low;

r_next = high;

m_next = 0;

while (l_next <= mid && r_next <= high){

if (myArray[l_next] <= myArray[r_next]){

merged[m_next++] = myArray[l_next++];

}

else{

merged[m_next++] = myArray[r_next++];

}

}

while (l_next <= mid){ merged[m_next++] = myArray[l_next++]; }

while (r_next <= high){ merged[m_next++] = myArray[r_next++]; }

for(i=0; i<=merged.length; i++){ myArray[i+low] = merged[i];}

}

Analyzing Merge Sort
1. Identify time required to Divide and Combine

2. Identify all subproblems and their sizes

3. Use recurrence relation to express recursive running time

4. Solve and express running time asymptotically

• Divide: 0 comparisons

• Conquer: recursively sort two lists of size
𝑛

2
• Combine: 𝑛 comparisons
• Recurrence:

𝑇 𝑛 = 0 + 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ 𝑛

𝑇(𝑛) = 2𝑇
𝑛

2
+ 𝑛

10

11

 𝑛 comparisons / level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛

2
) + 𝑛

𝑇 𝑛 = ෍

𝑖=1

log2 𝑛

𝑛 = 𝑛 log2 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Properties of Merge Sort

• Worst Case Running time:
• Θ(𝑛 log 𝑛)

• In-Place?
• No!

• Adaptive?
• No!

• Stable?
• Yes!

• As long as in a tie you always pick l_next

Quicksort

• Like Mergesort:
• Divide and conquer

• 𝑂(𝑛 log 𝑛) run time (kind of…)

• Unlike Mergesort:
• Divide step is the “hard” part

• Typically faster than Mergesort

13

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that
element

• Divide: select pivot element 𝑝, Partition(𝑝)

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

14

Partition (Divide step)

Given: a list, a pivot 𝑝

15

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Partition, Procedure

16

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12

17

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

18

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

19

8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

Partition Summary

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of
the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

20

Run time? 𝑂(𝑛)

Conquer

Recursively sort Left and Right sublists

21

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Quicksort Run Time (Best)

Then we divide in half each time

22

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quicksort Run Time (Worst)

Then we shorten by 1 each time

23

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛2)

Quicksort Run Time (Worst)

24

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑂(𝑛2)

𝑛

𝑛 − 1

…

1

𝑛 − 2

𝑛

𝑛 − 1

𝑛 − 2

1

𝑇 𝑛 = 1 + 2 + 3 + ⋯ + 𝑛

𝑇 𝑛 =
𝑛 𝑛 + 1

2

Quicksort on a (nearly) Sorted List

So we shorten by 1 each time

25

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

First element always yields unbalanced pivot

𝑇 𝑛 = 𝑂(𝑛2)

Good Pivot

• What makes a good Pivot?
• Roughly even split between left and right

• Ideally: median

• There are ways to find the median in linear time, but it’s complicated
and slow and you’re better off using mergesort

• In Practice:
• Pick a random value as a pivot

• Pick the middle of 3 random values as the pivot

26

Properties of Quick Sort

• Worst Case Running time:
• Θ(𝑛2)

• But Θ(𝑛 log 𝑛) average! And typically faster than mergesort!

• In-Place?
• ….Debatable

• Adaptive?
• No!

• Stable?
• No!

Improving Running time

• Recall our definition of the sorting problem:
• Input:

• An array 𝐴 of items
• A comparison function for these items

• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Under this definition, it is impossible to write an algorithm faster than
𝑛 log 𝑛 asymptotically.

• Observation:
• Sometimes there might be ways to determine the position of values without

comparisons!

“Linear Time” Sorting Algorithms

• Useable when you are able to make additional assumptions about the
contents of your list (beyond the ability to compare)
• Examples:

• The list contains only positive integers less than 𝑘

• The number of distinct values in the list is much smaller than the length of the list

• The running time expression will always have a term other than the
list’s length to account for this assumption
• Examples:

• Running time might be Θ(𝑘 ⋅ 𝑛) where 𝑘 is the range/count of values

BucketSort

• Assumes the array contains integers between 0 and 𝑘 − 1 (or some
other small range)

• Idea:
• Use each value as an index into an array of size 𝑘

• Add the item into the “bucket” at that index (e.g. linked list)

• Get sorted array by “appending” all the buckets

3
3

2
2
2

0 1 2 3

1
1

0
0
0
0
0

0 2 3 0 0 1 2 1 3 0 2 0 0 0 0 0 0 1 1 2 2 2 3 3

BucketSort Running Time

• Create array of 𝑘 buckets
• Either Θ(𝑘) or Θ(1) depending on some things…

• Insert all 𝑛 things into buckets
• Θ(𝑛)

• Empty buckets into an array
• Θ(𝑛 + 𝑘)

• Overall:
• Θ 𝑛 + 𝑘

• When is this better than mergesort?

Properties of BucketSort

• In-Place?
• No

• Adaptive?
• No

• Stable?
• Yes!

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15

RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑘)

• Repeat once per each digit
• log𝑏 𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏 𝑚 + 𝑏 log𝑏 𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?

ARPANET

38

Undirected Graphs

39

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Directed Graphs

40

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

1

2

3

4

5

6
7

9

8

Self-Edges and Duplicate Edges

41

1

2

3

4

5

6
7

9

8

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

Weighted Graphs

42

10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Graph Applications

• For each application below, consider:
• What are the nodes, what are the edges?

• Is the graph directed?

• Is the graph simple?

• Is the graph weighted?

• Facebook friends

• Twitter followers

• Java inheritance

• Airline Routes

Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an

edge

• Degree
• Number of “neighbors” of a vertex

• Indegree
• Number of incoming neighbors

• Outdegree
• Number of outgoing neighbors

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)

Adjacency List

46

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(𝑛 + 𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency List (Weighted)

47

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 + 𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ(?)

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix

48

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(?)
Add Edge: Θ(?)
Remove Edge: Θ(?)
Check if Edge Exists: Θ(?)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ ?

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix (weighted)

49

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

	Slide 1: CSE 332 Winter 2024 Lecture 15: Sorting
	Slide 2: Divide And Conquer Sorting
	Slide 3: Divide and Conquer
	Slide 4: Divide and Conquer Template Pseudocode
	Slide 5: Merge Sort
	Slide 6: Merge Sort In Action!
	Slide 7: Merge (the combine part)
	Slide 8: Merge Sort Pseudocode
	Slide 9: Merge Pseudocode
	Slide 10: Analyzing Merge Sort
	Slide 11
	Slide 12: Properties of Merge Sort
	Slide 13: Quicksort
	Slide 14: Quicksort
	Slide 15: Partition (Divide step)
	Slide 16: Partition, Procedure
	Slide 17
	Slide 18: Partition, Procedure
	Slide 19: Partition, Procedure
	Slide 20: Partition Summary
	Slide 21: Conquer
	Slide 22: Quicksort Run Time (Best)
	Slide 23: Quicksort Run Time (Worst)
	Slide 24: Quicksort Run Time (Worst)
	Slide 25: Quicksort on a (nearly) Sorted List
	Slide 26: Good Pivot
	Slide 27: Properties of Quick Sort
	Slide 28: Improving Running time
	Slide 29: “Linear Time” Sorting Algorithms
	Slide 30: BucketSort
	Slide 31: BucketSort Running Time
	Slide 32: Properties of BucketSort
	Slide 33: RadixSort
	Slide 34: RadixSort
	Slide 35: RadixSort
	Slide 36: RadixSort
	Slide 37: RadixSort Running Time
	Slide 38: ARPANET
	Slide 39: Undirected Graphs
	Slide 40: Directed Graphs
	Slide 41: Self-Edges and Duplicate Edges
	Slide 42: Weighted Graphs
	Slide 43: Graph Applications
	Slide 44: Some Graph Terms
	Slide 45: Graph Operations
	Slide 46: Adjacency List
	Slide 47: Adjacency List (Weighted)
	Slide 48: Adjacency Matrix
	Slide 49: Adjacency Matrix (weighted)
	Slide 50: Aside

