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Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
* Keys must be comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)



Less Nalve attempts

e Binary Search Trees (Friday)

* Tries (Project)

* AVL Trees (Today)

* B-Trees (this week)

* HashTables (next week)

* Red-Black Trees (not included in this course)
* Splay Trees (not included in this course)



Dictionary Data Structures O

O
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Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)

Sorted Linked List O(n) O(n) Q ¢)
_) Binary Search Tree @ O(n)
AVL Tree %F O(logn) O(logn) O(logn)



Binary Search Tree
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* Binary Tree
e Definition:

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Apply recursively

* Why?

* Makes searching quicker

* Worst case: tree’s height



Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;



Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;



insert(key, value, root){
if (root == Null){ this.root = new Node(key, value); } 0
parent = Null;

Insert Operation (iterative) @ 60@
OO

while (root != Null && key !=root.key){ °
parent = root;

if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!






Delete Operation (iterative) ‘A‘e
) ()

delete(key, root){ ‘gs’

while (root != Null && key !=root.key){ > / a e
if (key < root.key){ root = root.left; } ° a 0

else if (key > root.key){ root = root.right; }
}

if (@t == Null){ return; }
// Now root is the node to delete, what happens next?
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Delete — 3 Cases

P

* 0 Children (i.e. it’s a leaf) . =——

e 1 Child <

e 2 Children
J—



Finding the Max and Min

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; }
. . while (root.right != Null){
* Right-most Thing root = root.right; °
- }

return root;

* Min of a BST:
* Left-most Thing
|

| minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){

root = root.left;

}

return root;



-
N

<
o S
Delete Operation (iterative) e

delete(key, root){

while (root != Null && key != root.key){ ?
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }

}

if (root == Null){ return; }

4 if (root has no children){

make parent point to Null Instead;

}
/7 if (root has one child){

make parent point to that child instead;
}
/) if (root has two children){
make parent point to either the max from the left or min from the right

}



Improving the worst case

* How can we get a better worst case running time?
N O
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“Balanced” Binary Search Trees
-\

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)

~~—

* |dea: modify how we@sert/delete to keep the tree more “full”
— J —




dea 1: BothLSubtrees of Root/have same
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dea 2: Both Subtrees of Root have same

neight
e A4
Z)-é 7L ~C [ 2 %\
5" N
~ O

(D



|[dea 3: Both Subtrees ofLevery NOE? have

same # Nodes
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|dea 4: Both Subtrees of every Node have
same height &— /.
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(AVL Tree

* A Binary Search tree that maintains that the left and right subtrees of
. ° e ——— T — /
every node have heights that differ by at most one.
« height of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)
C— _
* Not too strong (works for any number of nodes)

e |dea of AVL Tree:

. Whe.n.yog |Qsetlt/dele'te Dodes, if tree |s\out of balan\c/e then(r@ncy the tree
* Modification = “rotation










Using AVL Trees

Key =9 l
Value = “hello” —
Height =3

 Each node has:

* Key Left=Node3 —
* Height

Left child °
Right child



Inserting into an AVL Tree

 Starts out the same way as BST:

L_@_q:where the new node should go
* Rutitin the right place (it will be a leaf) ——_

—

 Next check the balance

* |f the tree is still balanced, you’re done!
* Otherwise we need to do rotations




Insert Example
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Insert Example (+)




Not Balanced!

nSolution: rotate the whole tree to the right




Balanced!
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Right Rotation

* Ma
* Ma
* Ma

Ke t
Ke t

Ke t

ne left child the new root
ne old root the right child of the new

ne new root’s right subtree the old root’s left subtree




Insert Example



Not Balanced!

Solution: rotate the deepest imbalance to the left




Balanced!



Left Rotation

* Make the right child the new root
e Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

h+1

Left
Rotation




Insertion Story So Far

* After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left WheerfeathSSZ?eirfatssvzrkl
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Insertion Story So Far

* After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
* Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2
rotations!



Case LR

* From “root” of the deepest imbalance:

* Rotate left at the left child
* Rotate right at the root

Rotate Left
e at5s

Rotate

Right at 9

©



Case LR in General

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the imbalanced node
h+3

Rotate _
Left at b Right at a




Case RL in General

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

 Rotate left at the imbalanced node
h+3

Rotate Rotate
Right at Left at




Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left
at the left child and then rotate right at the root

* Case RL: If we inserted into the left subtree of the right child then: rotate
right at the right child and then rotate left at the root
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