CSE 332 Autumn 2023
Lecture 9: AVL Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary (Map) ADT

* Contents:
» Sets of key+value pairs
* Keys must be comparable

* Operations:

* insert(key, value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value
* Consequence: Keys cannot be repeated

 find(key)
* Returns the value associated with the given key

e delete(key)

 Remove the key (and its associated value)

Less Nalve attempts

e Binary Search Trees (Friday)

* Tries (Project)

* AVL Trees (Today)

* B-Trees (this week)

* HashTables (next week)

* Red-Black Trees (not included in this course)
* Splay Trees (not included in this course)

Dictionary Data Structures O

O
~_

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)

Sorted Linked List O(n) O(n) Q ¢)
_) Binary Search Tree @ O(n)
AVL Tree %F O(logn) O(logn) O(logn)

Binary Search Tree

-’——_\

* Binary Tree
e Definition:

* Order Property
* All keys in the left subtree are smaller than the root
* All keys in the right subtree are larger than the root
* Apply recursively

* Why?

* Makes searching quicker

* Worst case: tree’s height

Find Operation (recursive)

find(key, root){
if (root == Null){
return Null;
{
if (key == root.key){
return root.value;
}
if (key < root.key){
return find(key, root.left);
}
if (key > root.key){
return find(key, root.right);
}

return Null;

Find Operation (iterative)

find(key, root){
while (root != Null && key != root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;

insert(key, value, root){
if (root == Null){ this.root = new Node(key, value); } 0
parent = Null;

Insert Operation (iterative) @ 60@
OO

while (root != Null && key !=root.key){ °
parent = root;

if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }
}
if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); }

} Note: Insert happens only at the leaves!

Delete Operation (iterative) ‘A‘e
) ()

delete(key, root){ ‘gs’

while (root != Null && key !=root.key){ > / a e
if (key < root.key){ root = root.left; } ° a 0

else if (key > root.key){ root = root.right; }
}

if (@t == Null){ return; }
// Now root is the node to delete, what happens next?

) (_ﬂnjc/{L Neo, 049 Ted ¢
S g e+ oy, 7%(;/*,/‘{74

Delete — 3 Cases

P

* 0 Children (i.e. it’s a leaf) . =——

e 1 Child <

e 2 Children
J—

Finding the Max and Min

maxNode(root){
e Max Of 3 BST: if (root == Null){ return Null; }
. . while (root.right != Null){
* Right-most Thing root = root.right; °
- }

return root;

* Min of a BST:
* Left-most Thing
|

| minNode(root){
if (root == Null){ return Null; }
while (root.left != Null){

root = root.left;

}

return root;

-
N

<
o S
Delete Operation (iterative) e

delete(key, root){

while (root != Null && key != root.key){ ?
if (key < root.key){ root = root.left; }
else if (key > root.key){ root = root.right; }

}

if (root == Null){ return; }

4 if (root has no children){

make parent point to Null Instead;

}
/7 if (root has one child){

make parent point to that child instead;
}
/) if (root has two children){
make parent point to either the max from the left or min from the right

}

Improving the worst case

* How can we get a better worst case running time?
N O
/ < —

. .

“Balanced” Binary Search Trees
-\

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)

~~—

* |dea: modify how we@sert/delete to keep the tree more “full”
— J —

dea 1: BothLSubtrees of Root/have same

\

Nodes -

dea 2: Both Subtrees of Root have same

neight
e A4
Z)-é 7L ~C [2 %\
5" N
~ O

(D

|[dea 3: Both Subtrees ofLevery NOE? have

same # Nodes
Y
S

|dea 4: Both Subtrees of every Node have
same height &— /.

= O@

alys

(AVL Tree

* A Binary Search tree that maintains that the left and right subtrees of
. ° e ——— T — /
every node have heights that differ by at most one.
« height of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)
C— _
* Not too strong (works for any number of nodes)

e |dea of AVL Tree:

. Whe.n.yog |Qsetlt/dele'te Dodes, if tree |s\out of balan\c/e then(r@ncy the tree
* Modification = “rotation

Using AVL Trees

Key =9 l
Value = “hello” —
Height =3

 Each node has:

* Key Left=Node3 —
* Height

Left child °
Right child

Inserting into an AVL Tree

 Starts out the same way as BST:

L_@_q:where the new node should go
* Rutitin the right place (it will be a leaf) ——_

—

 Next check the balance

* |f the tree is still balanced, you’re done!
* Otherwise we need to do rotations

Insert Example

O & O O

Insert Example (+)

Not Balanced!

nSolution: rotate the whole tree to the right

Balanced!

0
liies

e ————

Right Rotation

* Ma
* Ma
* Ma

Ke t
Ke t

Ke t

ne left child the new root
ne old root the right child of the new

ne new root’s right subtree the old root’s left subtree

Insert Example

Not Balanced!

Solution: rotate the deepest imbalance to the left

Balanced!

Left Rotation

* Make the right child the new root
e Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

h+1

Left
Rotation

Insertion Story So Far

* After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left WheerfeathSSZ?eirfatssvzrkl

= = -

Insertion Story So Far

* After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
* Case RL: If we inserted into the left subtree of the right child then ???

Cases LR and RL require 2
rotations!

Case LR

* From “root” of the deepest imbalance:

* Rotate left at the left child
* Rotate right at the root

Rotate Left
e at5s

Rotate

Right at 9

©

Case LR in General

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the imbalanced node
h+3

Rotate _
Left at b Right at a

Case RL in General

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

 Rotate left at the imbalanced node
h+3

Rotate Rotate
Right at Left at

Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left
at the left child and then rotate right at the root

* Case RL: If we inserted into the left subtree of the right child then: rotate
right at the right child and then rotate left at the root

	Slide 1: CSE 332 Autumn 2023 Lecture 9: AVL Trees
	Slide 2: Dictionary (Map) ADT
	Slide 3: Less Naïve attempts
	Slide 4: Dictionary Data Structures
	Slide 5: Binary Search Tree
	Slide 6: Find Operation (recursive)
	Slide 7: Find Operation (iterative)
	Slide 8: Insert Operation (iterative)
	Slide 9
	Slide 10: Delete Operation (iterative)
	Slide 11: Delete – 3 Cases
	Slide 12: Finding the Max and Min
	Slide 13: Delete Operation (iterative)
	Slide 14: Improving the worst case
	Slide 15: “Balanced” Binary Search Trees
	Slide 16: Idea 1: Both Subtrees of Root have same # Nodes
	Slide 17: Idea 2: Both Subtrees of Root have same height
	Slide 18: Idea 3: Both Subtrees of every Node have same # Nodes
	Slide 19: Idea 4: Both Subtrees of every Node have same height
	Slide 20: AVL Tree
	Slide 21: Is it an AVL Tree?
	Slide 22
	Slide 23: Using AVL Trees
	Slide 24: Inserting into an AVL Tree
	Slide 25: Insert Example
	Slide 26: Insert Example
	Slide 27: Not Balanced!
	Slide 28: Balanced!
	Slide 29: Right Rotation
	Slide 30: Insert Example
	Slide 31: Not Balanced!
	Slide 32: Balanced!
	Slide 33: Left Rotation
	Slide 34: Insertion Story So Far
	Slide 35: Insertion Story So Far
	Slide 36: Case LR
	Slide 37: Case LR in General
	Slide 38: Case RL in General
	Slide 39: Insert Summary

