
CSE 332 Autumn 2023
Lecture 5: Priority Queues

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Goals for Algorithm Analysis

• Identify a function which maps the algorithm’s input size to a measure
of resources used
• Domain of the function: sizes of the input

• Number of characters in a string, number of items in a list, number of pixels in an image

• Codomain of the function: counts of resources used
• Number of times the algorithm adds two numbers together, number times the algorithm

does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time

• Important note: Make sure you know the “units” of your domain and
codomain!
• Domain = inputs to the function
• Codomain = outputs to the function

Worst Case Running Time Analysis

• If an algorithm has a worst case running time of 𝑓(𝑛)
• Among all possible size-𝑛 inputs, the “worst” one will do 𝑓(𝑛) “operations”

• I.e. 𝑓(𝑛) gives the maximum operation count from among all inputs of size 𝑛

Comparing

𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)

𝑓 𝑛 ∈ Θ(𝑔 𝑛)

𝑓 𝑛 ∈ Ω(𝑔 𝑛)

Asymptotic Notation

• 𝑂 𝑔 𝑛
• The set of functions with asymptotic behavior less than or equal to 𝑔 𝑛
• Upper-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ 𝑂 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔 𝑛

• Ω(𝑔 𝑛)
• the set of functions with asymptotic behavior greater than or equal to 𝑔 𝑛
• Lower-bounded by a constant times 𝑔 for large enough values 𝑛

• 𝑓 ∈ Ω 𝑔 𝑛 ≡ ∃𝑐 > 0. ∃𝑛0 > 0. ∀𝑛 ≥ 𝑛0. 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔 𝑛

• Θ 𝑔 𝑛
• “Tightly” within constant of 𝑔 for large 𝑛

• Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 > 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof:

Asymptotic Notation Example

• Show: 10𝑛 + 100 ∈ 𝑂 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 10𝑛 + 100 ≤ 𝑐 ⋅ 𝑛2

• Proof: Let 𝑐 = 10 and 𝑛0 = 6. Show ∀𝑛 ≥ 6.10𝑛 + 100 ≤ 10𝑛2

 10𝑛 + 100 ≤ 10𝑛2

 ≡ 𝑛 + 10 ≤ 𝑛2

 ≡ 10 ≤ 𝑛2 − 𝑛

 ≡ 10 ≤ 𝑛 𝑛 − 1

 This is True because 𝑛(𝑛 − 1) is strictly increasing and 6 6 − 1 > 10

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛
2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof:

Asymptotic Notation Example

• Show: 13n2 − 50n ∈ Ω 𝑛2

• Technique: find values 𝑐 > 0 and 𝑛0 > 0 such that ∀𝑛 ≥ 𝑛0. 13𝑛
2 − 50𝑛 ≥ 𝑐 ⋅ 𝑛2

• Proof: let 𝑐 = 12 and 𝑛0 = 50. Show ∀𝑛 ≥ 50. 13𝑛2 − 50𝑛 ≥ 12𝑛2

 13𝑛2 − 50𝑛 ≥ 12𝑛2

 ≡ 𝑛2 − 50𝑛 ≥ 0

 ≡ 𝑛2 ≥ 50𝑛

 ≡ 𝑛 ≥ 50

 This is certainly true ∀𝑛 ≥ 50.

Worst Case Running Time - ExamplemyFunction(List n){

 b = 55 + 5;

 c = b / 3;

 b = c + 100;

 for (i = 0; i < n.size(); i++) {

 b++;

 }

 if (b % 2 == 0) {

 c++;

 }

 else {

 for (i = 0; i < n.size(); i++) {

 c++;

 }

 }

 return c;

}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Worst Case Running Time – Example 2
beAnnoying(List n){

 List m = [];

 for (i=0; i < n.size(); i++){

 m.add(n[i]);

 for (j=0; j< n.size(); j++){

 print (“Hi, I’m annoying”);

 }

 }

 return;

}

Questions to ask:
• What are the units of the input size?
• What are the operations we’re counting?
• For each line:

• How many times will it run?
• How long does it take to run?
• Does this change with the input size?

Gaining Intuition

• When doing asymptotic analysis of functions:
• If multiple expressions are added together, ignore all but the “biggest”

• If 𝑓(𝑛) grows asymptotically faster than 𝑔(𝑛), then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑓 𝑛

• Ignore all multiplicative constants
• 𝑓 𝑛 + 𝑐 ∈ Θ 𝑓 𝑛 for any constant 𝑐 ∈ ℝ

• Ignore bases of logarithms

• Do NOT ignore:
• Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)

• Logarithms themselves

More Examples

• Is each of the following True or False?
• 4 + 3𝑛 ∈ 𝑂(𝑛)

• 𝑛 + 2 log 𝑛 ∈ 𝑂(log 𝑛)

• log 𝑛 + 2 ∈ 𝑂(1)

• 𝑛50 ∈ 𝑂(1.1𝑛)

• 3𝑛 ∈ Θ(2𝑛)

Common Categories

• 𝑂(1) “constant”

• 𝑂 log 𝑛 “logarithmic”

• 𝑂 𝑛 “linear”

• 𝑂 𝑛 log 𝑛 “log-linear”

• 𝑂 𝑛2 “quadratic”

• 𝑂 𝑛3 “cubic”

• 𝑂 𝑛𝑘 “polynomial”

• 𝑂 𝑘𝑛 “exponential”

Defining your running time function

• Worst-case complexity:
• max number of steps algorithm takes on “most challenging” input

• Best-case complexity:
• min number of steps algorithm takes on “easiest” input

• Average/expected complexity:
• avg number of steps algorithm takes on random inputs (context-dependent)

• Amortized complexity:
• max total number of steps algorithm takes on M “most challenging”

consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

• What is it?
• A “First In First Out” (FIFO) collection of items

• What Operations do we need?
• Enqueue

• Add a new item to the queue

• Dequeue
• Remove the “oldest” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

ADT: Priority Queue

• What is it?
• A collection of items and their “priorities”
• Allows quick access/removal to the “top priority” thing

• What Operations do we need?
• insert(item, priority)

• Add a new item to the PQ with indicated priority
• Usually, smaller priority value means more important

• deleteMin
• Remove and return the “top priority” item from the queue

• Is_empty
• Indicate whether or not there are items still on the queue

• Note: the “priority” value can be any type/class so long as it’s comparable
(i.e. you can use “<“ or “compareTo” with it)

Priority Queue, example
PriorityQueue PQ = new PriorityQueue();

PQ.insert(5,5)

PQ.insert(6,6)

PQ.insert(1,1)

PQ.insert(3,3)

PQ.insert(8,8)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Priority Queue, example
PriorityQueue PQ = new PriorityQueue();

PQ.insert(5,5)

PQ.insert(6,6)

PQ.insert(1,1)

Print(PQ.deleteMin)

PQ.insert(3,3)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

PQ.insert(8,8)

Print(PQ.deleteMin)

Print(PQ.deleteMin)

Applications?

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array

Unsorted Linked List

Sorted Circular Array

Sorted Linked List

Binary Search Tree

Note: Assume we know the maximum size of the PQ in advance

Thinking through implementations

Data Structure Worst case time to insert Worst case time to deleteMin

Unsorted Array Θ(1) Θ(𝑛)

Unsorted Linked List Θ(1) Θ(𝑛)

Sorted Circular Array Θ log 𝑛 Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 1

Binary Search Tree Θ 𝑛 Θ 1

Note: Assume we know the maximum size of the PQ in advance

Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be
perfectly sorted

• Θ(log 𝑛) worst case for deleteMin and insert
1

3 2

4 7 5 6

5 9

Heap – Priority Queue Data Structure

• Idea: We need to keep some ordering, but it doesn’t need to be
perfectly sorted

• Θ(log 𝑛) worst case for deleteMin and insert
1

3 2

4 7 5 6

5 9

1

2 3

4 65 7

8 9

Tree Terminology – Review?

• root(T):

• leaves(T):

• children(3):

• parent(4):

• siblings(7):

• ancestors(9):

• descendents(3):

• subtree(4):

• height(T):

• depth(4):

• branchingFactor(T):

1

3 2

4 7 5 6

5 9

Tree T

Trees for Heaps

• Binary Trees:
• The branching factor is 2

• Every node has ≤ 2 children

• Complete Tree:
• All “layers” are full, except the bottom

• Bottom layer filled left-to-right

1

3 2

4 7 5 6

5 9

Tree T

Challenge!

• What is the maximum number of total nodes in a binary tree of
height ℎ?

• If I have 𝑛 nodes in a binary tree, what is the its minimum height?

Challenge!

• What is the maximum number of total nodes in a binary tree of height ℎ?
• 2ℎ+1 − 1

• Θ 2ℎ

• If I have 𝑛 nodes in a binary tree, what is its minimum height?
• log2 𝑛

• Θ log 𝑛

• Heap Idea:
• If 𝑛 values are inserted into a complete tree, the height will be roughly log 𝑛

• Ensure each insert and deleteMin requires just one “trip” from root to leaf

Heap Data Structure

• Keep items in a complete binary tree

• Maintain the “Heap Property” of the tree
• Every node’s priority is ≤ its children’s priority

• Where is the min?

• How do I insert?

• How do I deleteMin?

• How to do it in Java?

1

3 2

4 7 5 6

5 9

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

3 2

4 7 5 6

5 9

1.5

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

3 2

4 7 5 6

5 9 1.5

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

3 2

4 1.5 5 6

5 9 7

Percolate Up

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Percolate Up

Heap Insert

insert(item){

 put item in the “next open” spot (keep tree complete)

 while (item.priority < parent(item).priority){

 swap item with parent

 }

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

1

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

1.5 2

4 3 5 6

5 9 7

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

7 2

4 3 5 6

5 9

Percolate Down

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

3 2

4 7 5 6

5 9

Percolate Down

Heap deleteMin

deleteMin(){

 min = root

 br = bottom-right item

 move br to the root

 while(br > either of its children){

 swap br with its smallest child

 }

 return min

}

7

3 2

4 7 5 6

5 9

	Slide 1: CSE 332 Autumn 2023 Lecture 5: Priority Queues
	Slide 2: Goals for Algorithm Analysis
	Slide 3: Worst Case Running Time Analysis
	Slide 4: Comparing
	Slide 5
	Slide 6: Asymptotic Notation
	Slide 7: Asymptotic Notation Example
	Slide 8: Asymptotic Notation Example
	Slide 9: Asymptotic Notation Example
	Slide 10: Asymptotic Notation Example
	Slide 11: Worst Case Running Time - Example
	Slide 12: Worst Case Running Time – Example 2
	Slide 13: Gaining Intuition
	Slide 14: More Examples
	Slide 15: Common Categories
	Slide 16: Defining your running time function
	Slide 17: ADT: Queue
	Slide 18: ADT: Priority Queue
	Slide 19: Priority Queue, example
	Slide 20: Priority Queue, example
	Slide 21: Applications?
	Slide 22: Thinking through implementations
	Slide 23: Thinking through implementations
	Slide 24: Heap – Priority Queue Data Structure
	Slide 25: Heap – Priority Queue Data Structure
	Slide 26: Tree Terminology – Review?
	Slide 27: Trees for Heaps
	Slide 28: Challenge!
	Slide 29: Challenge!
	Slide 30: Heap Data Structure
	Slide 31: Heap Insert
	Slide 32: Heap Insert
	Slide 33: Heap Insert
	Slide 34: Heap Insert
	Slide 35: Heap Insert
	Slide 36: Heap deleteMin
	Slide 37: Heap deleteMin
	Slide 38: Heap deleteMin
	Slide 39: Heap deleteMin
	Slide 40: Heap deleteMin

