CSE 332 Autumn 2023
Lecture 2: Algorithm Analysis

pt.1

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Terminology

e Abstract Data Type (ADT)
 Mathematical description of a “thing” with set of operations on that “thing”

* Algorithm
* A high level, language-independent description of a step-by-step process

* Data structure

* A specific organization of data and family of algorithms for implementing an
ADT

_* Implementation of a data structure %

* A specific implementation in a specific language

ADT: Queue

e What is it?
e A “First In First Out” (FIFO) collection of items

* What Operations do we need?

* Enqueue
* Add a new item to the queue

* Dequeue __—
 Remove the “oldest” item from the queue Q

* |s_empty
* Indicate whether or not there are items still on the queue

LLinked LListl— Queue Data Structure

Front +> 5 e

8

#

3

#

4

4

Pl T

* Queue represented as a “chdin” of items
* A “front” variable referencing the oldest item
* A “back” variable referencing the most recent item
e Each item points to the item enqueued after it

* Enqueue Procedure:

/ﬂdeJ é/é

* Dequeue Procedure:

—

VZ/é‘,Mf//C/~J4—P—)(—thx_/_

* |s_empty Procedure:

/(_,

6—-

.

Linked List — Queue Data Structure

~—
* Queue represented as a “chain” of items T

* A “front” variable referencing the oldest item

* A “back” variable referencing the most recent item Back

e Each item points to the item enqueued after it 7
* Enqueue Procedure: enaueuei

last = .new Node(x)
back.m
M

_W

d
* Dequeue Procedure: equeue(l

first = front.item
front = front.next
return first

o}
* |s_empty Procedure: is—empty({
_ return front.equals(Null)

1

Circular Array — Queue Data Structure

* Queue represented as a “chain” of items T
* A “front” variable referencing the oldest item
* A “back” variable referencing the most recent item
e Each item points to the item enqueued after it

* Enqueue Procedure:

Back

* Dequeue Procedure:

* |s_empty Procedure:

Circular Array — Queue Data Structure

74

8

3

4

7

A

|

2

b

Front=6~

¢

[&

0

7

1

2

3

4

5

6

7

8

9

* Queue represented as an array of items

* A “back” index to indicate the most recent item in the queue

* Enqueue Procedure:
* Dequeue Procedure:
* Is_empty Procedure:

Back%ﬁ
* A “front” index to indicate the oldest item in the queue / >/E7\)

Circular Array — Queue Data Structure

5

8

3

4

7

Front=0

0

1

2

3

4

5 6 7 3

9

* Queue represented as an array of items

* Dequeue Procedure: deaueue()

first = queue[front]

front = (fron
/_\

}

* |s_empty Procedure: is_empty(){

}

return front == back

Back=4

o queue.length

—

»l

Linked List vs. Circular Array

* If you know the max size of the queue, maybe consider array version
* Want to enforce a max size

* Want to peek at a specific index
* Circular array might use memory more efficiently

* One might be better for some implementations (e.g. different types
of objects)

* Concurrency...?

Fln)=n."
Warm up:

* | have a pile of string
* | have one end of the string in-hand
* | need to find the other end in the pile

« Howcanldo thisﬂw? | eL.

P J

Algorithm ldeas

* |deas:

11

Algorithm Running Times

* How do we express running time?
* Units of “time”
* How to express efficiency?

My Apnroach

13

End-of-Yarn Finding

1. Set aside the already-obtained “beginning”

2. If you see the end of the yarn, you’re done!

3. Separate the pile of yarn into 2 piles, note which connectsto_
the beginning (call it pile A, the other pile B) s |

Repeat on B
pile with end 5),

4. Count the number of strands crossing the piles

5. Ifthe count is even, pile A contains the end, else pile B does

14

Why Do resource Analysis?

* Allows us to compare algorithms, not implementations
* Using observations necessarily couples the algorithm with its implementation

* If my implementation on my computer takes more time than your
implementation on your computer, we cannot conclude your algorithm is
better

* We can predict an algorithm’s running time before implementing
* Understand where the bottlenecks are in our algorithm

Goals for Algorithm Analysis

* |dentify a function which maps the algorithm’s input size to a measure
of resources used
 Domain of the function: sizes of the input
* Number of characters in a string, number of items in a list, number of pixels in an image

* Codomain of the function: counts of resources used
* Number of times the algorithm adds two numbers together, number times the algorithm
does a > or < comparison, maximum number of bytes of memory the algorithm uses at
any time
* Important note: Make sure you know the “units” of your domain and
codomain!

Worst Case Analysis (in general)

* If an algorithm has a worst case resource complexity of f(n)
* Among all possible size-n inputs, the “worst” one will use f(n) “resources”

* l.e. f(n) gives the maximum count of resources needed from among all
inputs of size n

Worst Case Running Time Analysis

* If an algorithm has a worst case running time of f(n)
* Among all possible size-n inputs, the “worst” one will do f(n) “operations”
* l.e. f(n) gives the maximum operation count from among all inputs of size n

Worst Case Space Analysis

* If an algorithm has a worst case space complexity of f(n)
* Among all possible size-n inputs, the “worst” one will need f(n) “memory units”
* l.e. f(n) gives the maximum memory unit count from among all inputs of size n

myfunctionistny VWorst Case Running Time - Example

b=55+5;

c=b/3; Questions to ask:
b =c+ 100; What are the units of the input size?
for (i = 0; i < n.size(); i++) { What are the operations we’re counting?
b++; * For each line:
} * How many times will it run?
if (b % 2==0){ * How long does it take to run?
Ct++; * Does this change with the input size?
}
else {
for (i = 0; i < n.size(); i++) {
C++;
}
}
return c;

Worst Case Running Time — Example 2
beAnnoying(List n){

Questions to ask:
List m = []; * What are the units of the input size?
for (i=0; i < n.size(); i++){ * What are the operations we’re counting?

, For each line:
m.add(nli]); * How many times will it run?
for (j=0; j< n.size(); j++){ * How long does it take to run?

? “apry: 1’ . 7] ° 1 : . . ?
print (“Hi, ’'m annoying”); Does this change with the input size

}

return;

Worst Case Running Time — General Guide

* Add together the time of consecutive statements

e Loops: Sum up the time required through each iteration of the loop
* If each takes the same time, then [time per loop X number of iterations]

* Conditionals: Sum together the time to check the condition and time
of the slowest branch

* Function Calls: Time of the function’s body
* Recursion: Solve a recurrence relation

	Slide 1: CSE 332 Autumn 2023 Lecture 2: Algorithm Analysis pt.1
	Slide 2: Terminology
	Slide 3: ADT: Queue
	Slide 4: Linked List – Queue Data Structure
	Slide 5: Linked List – Queue Data Structure
	Slide 6: Circular Array – Queue Data Structure
	Slide 7: Circular Array – Queue Data Structure
	Slide 8: Circular Array – Queue Data Structure
	Slide 9: Linked List vs. Circular Array
	Slide 10
	Slide 11: Algorithm Ideas
	Slide 12: Algorithm Running Times
	Slide 13: My Approach
	Slide 14: End-of-Yarn Finding
	Slide 15: Why Do resource Analysis?
	Slide 16: Goals for Algorithm Analysis
	Slide 17: Worst Case Analysis (in general)
	Slide 18: Worst Case Running Time Analysis
	Slide 19: Worst Case Space Analysis
	Slide 20: Worst Case Running Time - Example
	Slide 21: Worst Case Running Time – Example 2
	Slide 22: Worst Case Running Time – General Guide

