
CSE 332: Data Abstractions 
 

Lecture 24: Amortized Analysis 

Ruth Anderson 

Winter 2013 



Announcements 

• Homework 8 – due Friday March 15th at the BEGINNING of 

lecture! 

 

• Project 3 – the last programming project! 

– Writeup - Thursday March 14, 2011, 11PM - (25% of overall grade) 

 

• Final Exam – Tues March 19th, 2:30-4:30pm in Guggenheim 220, NOT 

in our regular lecture room. 
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Amortized Analysis  

• Recall our plain-old stack implemented as an array that doubles its 

size if it runs out of room 

– How can we claim push is O(1)? 

• Sure, most calls will take O(1), but some (the ones when we 

have to resize to stack) will take O(n)  

– We can’t claim O(1) as guaranteed run-time, but we can claim 
it’s an O(1) amortized bound 

• (Very) rough idea: Resizing won’t happen ‘very often’ 

– Amortized bounds are not a handy-wave concept though 

• It’s a provable bound for the running time, not necessarily 

for every operation, but over some sequence of operations 

• Don’t use amortized to mean ‘we don’t really expect it to 

happen much’ 
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Amortized Analysis  

• This lecture: 

– What does amortized mean? 

– When are amortized bounds good enough? 

– How can we prove an amortized bound? 
 

 

• Will do a couple simple examples  

– The text has more complicated examples and proof techniques 

– The idea of how amortized describes average cost is essential 
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Amortized Complexity 

If a sequence of M operations takes O(M  f(n)) time,  

we say the amortized runtime is O(f(n)) 
 

Amortized bound: worst-case guarantee over sequences of operations 

– Example: If any n operations take O(n), then amortized O(1) 

– Example: If any n operations take O(n3), then amortized O(n2) 

 

• The worst case time per operation can be larger than f(n) 

– For example, maybe f(n)=1, but the worst-case is n 
 

• But the worst-case for any sequence of M operations is O(M  f(n)) 
 

Amortized guarantee ensures the average time per operation for any 
sequence is O(f(n)) 
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Amortized Complexity 
If a sequence of M operations takes O(M  f(n)) time,  

we say the amortized runtime is O(f(n)) 
 

• Another way to think about it: If every possible sequence of M 

operations runs in O(M*f(n)) time, we have an amortized bound of 

O(f(n)) 

• A good way to convince yourself that an amortized bound does or 

does not hold:  Try to come up with a worst-possible sequence of 

operations 

– Ex: Do BST inserts have an amortized bound of O(logM)? 

–  We can come up with a sequence of M inserts that takes O(M2) 

time (M in-order inserts); so, no – O(MlogM) is not an amortized 

bound 
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Amortized != Average Case 

• The ‘average case’ is generally probabilistic 

– What data/series of operations are we most likely to see? 

– Ex: Average case for insertion in BST is O(logn); worst case 

O(n) 

– For ‘expected’ data, operations take about O(logn) each 

– However, we could come up with a huge # of operations 

performed in a row that each have O(n) time 

– Thus O(logn) is not an amortized bound for BST operations 

• Amortized bounds are not probabilistic 

– It’s not ‘we expect …’; it’s ‘we are guaranteed ...’ 

– If the amortized bound is O(logn), then there does not exist a 

long series of operations whose average cost is greater than 

O(logn) 
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Amortized != Average Case Example 

• Consider a hashtable using separate chaining 

• We generally expect O(1) time lookups; why not O(1) 

amortized? 

– Imagine a worst-case where all n elements are in one bucket 

– Lookup one will likely take n/2 time 

– Because we can concoct this worst-case scenario, it can’t be 

an amortized bound 

• But the expected case is O(1) because of the expected 

distribution keys to different buckets (given a decent hash 

function, prime table size, etc.) 

3/13/2013 8 



“Building Up Credit” 

• Can think of preceding “cheap” operations as building up “credit” 

that can be used to “pay for” later “expensive” operations 

 

• Because any sequence of operations must be under the bound, 

enough “cheap” operations must come first 

– Else a prefix of the sequence would violate the bound 
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Example #1: Resizing stack 

From lecture 1: A stack implemented with an array where we double 

the size of the array if it becomes full 

 

Claim: Any sequence of push/pop/isEmpty is amortized O(1) 

 

Need to show any sequence of M operations takes time O(M) 

– Recall the non-resizing work is O(M) (i.e., M*O(1)) 

– Need to show that resizing work is also O(M) (or less) 

– The resizing work is proportional to the total number of element 

copies we do for the resizing 

– So it suffices to show that: 

 After M operations, we have done < 2M total element copies 

    (So number of copies per operation is bounded by a constant) 
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Amount of copying 

How much copying gets done? 

• Take M=100: Say we start with an empty array of length 32 and finish with 
100 elements 

• Will resize to 64, then resize to 128 

• Each resize has half that many copies (32 the first time, 64 the second) 

• In this case, 96 total copies; 96< 2M 

 

Show: after  M operations, we have done  < 2M  total element copies 

Let n be the size of the array after M operations 

– Every time we’re too full to insert, we resize via doubling 

– Total element copies =  
INITIAL_SIZE + 2*INITIAL_SIZE + … + n/8 + n/4 + n/2 < n 

– In order to get it to resize to size n, we need at least half that many 
pushes: 

 M  n/2 

– So 

2M  n > number of element copies 
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Why doubling? Other approaches 

• If array grows by a constant amount (say 1000),  

 operations are not amortized O(1) 

– Every 1000 inserts, we do additional O(n) work copying 

– So work per insert is roughly O(1)+O(n/1000) = O(n) 

– After O(M) operations, you may have done (M2) copies 

 

• If array shrinks when 1/2 empty, operations are not amortized O(1) 

– Terrible case: pop once and shrink, push once and grow, pop 

once and shrink, … 

 

• If array shrinks when 3/4 empty, it is amortized O(1) 

– Proof is more complicated, but basic idea remains: by the time 

an expensive operation occurs, many cheap ones occurred 
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Example #2: Queue with two stacks 

A clever and simple queue implementation using only stacks 
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class Queue<E> { 

  Stack<E> in  = new Stack<E>(); 

  Stack<E> out = new Stack<E>(); 

  void enqueue(E x){ in.push(x); } 

  E dequeue(){ 

    if(out.isEmpty()) { 

      while(!in.isEmpty()) { 

        out.push(in.pop()); 

      } 

    } 

    return out.pop(); 

  } 

} 
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Example #2: Queue with two stacks 

A clever and simple queue implementation using only stacks 
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class Queue<E> { 

  Stack<E> in  = new Stack<E>(); 

  Stack<E> out = new Stack<E>(); 

  void enqueue(E x){ in.push(x); } 

  E dequeue(){ 

    if(out.isEmpty()) { 

      while(!in.isEmpty()) { 

        out.push(in.pop()); 

      } 

    } 

    return out.pop(); 

  } 

} 
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Example #2: Queue with two stacks 

A clever and simple queue implementation using only stacks 
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class Queue<E> { 

  Stack<E> in  = new Stack<E>(); 

  Stack<E> out = new Stack<E>(); 

  void enqueue(E x){ in.push(x); } 

  E dequeue(){ 

    if(out.isEmpty()) { 

      while(!in.isEmpty()) { 

        out.push(in.pop()); 

      } 

    } 

    return out.pop(); 

  } 

} 
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Example #2: Queue with two stacks 

A clever and simple queue implementation using only stacks 

3/13/2013 16 

class Queue<E> { 

  Stack<E> in  = new Stack<E>(); 

  Stack<E> out = new Stack<E>(); 

  void enqueue(E x){ in.push(x); } 

  E dequeue(){ 

    if(out.isEmpty()) { 

      while(!in.isEmpty()) { 

        out.push(in.pop()); 

      } 

    } 

    return out.pop(); 

  } 

} 

 

 

 

in out 

dequeue twice 

 

 

 

 

C B A 

 

 

E 

D 



Example #2: Queue with two stacks 

A clever and simple queue implementation using only stacks 
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class Queue<E> { 

  Stack<E> in  = new Stack<E>(); 

  Stack<E> out = new Stack<E>(); 

  void enqueue(E x){ in.push(x); } 

  E dequeue(){ 

    if(out.isEmpty()) { 

      while(!in.isEmpty()) { 

        out.push(in.pop()); 

      } 

    } 

    return out.pop(); 

  } 

} 
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Correctness and usefulness 

• If x is enqueued before y, then x will be popped from in later 

than y and therefore popped from out sooner than y 

– So it is a queue 

 

• Example:  

– Wouldn’t it be nice to have a queue of t-shirts to wear 

instead of a stack (like in your dresser)? 

– So have two stacks 

• in: stack of t-shirts go after you wash them 

• out: stack of t-shirts to wear 

• if out is empty, reverse in into out 
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Queue Analysis 

• dequeue is not O(1) worst-case because out might be empty 

and in may have lots of items that need to be copied over 

(taking O(n) time) 
 

• But if the stack operations are (amortized) O(1), then any 

sequence of queue operations is amortized O(1) 

– How much total work is done per element? 

• 1 push onto in 

• 1 pop off of in 

• 1 push onto out 

• 1 pop off of out 

– So the total work should be 4n; just shifted around 

– When you reverse n elements by popping them off in and 

pushing them onto out, there were n earlier O(1) enqueue 

operations you got ‘for cheap’ 
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Amortized bounds are not limited to  

array-based data structures 

• Splay Tree: Another balance BST data structure 

– Comparable in many ways to AVL tree 

– Like BST & AVL trees, operations are a function of the height 

– Height for splay tree can be O(n) 

– Nonetheless, we have O(logn) amortized bound on operations 

– A single operation may need to work through a O(n) height tree 

• But splay tree operations (even lookups) shift around the tree 

– a worst-case tree of height O(n) is guaranteed to be ‘fixed’ 

over the course of sufficiently many operations 
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Amortized useful? 

• When the average per operation is all we care about (i.e., sum 

over all operations), amortized is perfectly fine 

– This is the usual situation 
 

• If we need every operation to finish quickly, amortized bounds 

are too weak 

– In a concurrent setting 

– Time-critical real-time applications 
 

• While amortized analysis is about averages, we are averaging 

cost-per-operation on worst-case input 

– Contrast: Average-case analysis is about averages across 

possible inputs.  Example: if all initial permutations of an 
array are equally likely, then quicksort is O(n log n) on 

average even though on some inputs it is O(n2)) 
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Not always so simple 

• Proofs for amortized bounds can be much more complicated 
 

 

• For more complicated examples, the proofs need much more 

sophisticated invariants and “potential functions” to describe 

how earlier cheap operations build up “energy” or “money” to 

“pay for” later expensive operations 

– See Chapter 11 
 

• But complicated proofs have nothing to do with the code! 
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