
CSE 332: Data Abstractions 
 

Lecture 17: Introduction to Multithreading & 

Fork-Join Parallelism 

Ruth Anderson 

Winter 2013 



Announcements 

• Homework 5 – due Fri Feb 22nd  

• Project 3 – posted later today, partners o.k. 

 

 

 

 

 

2 



Changing a major assumption 

So far most or all of your study of computer science has assumed 
 

One thing happened at a time 
 

Called sequential programming – everything part of one sequence 

 

Removing this assumption creates major challenges & opportunities 

– Programming: Divide work among threads of execution and 

coordinate (synchronize) among them 

– Algorithms: How can parallel activity provide speed-up  

 (more throughput: work done per unit time) 

– Data structures: May need to support concurrent access 

(multiple threads operating on data at the same time) 

 
3 2/20/2013 



A simplified view of history 

Writing correct and efficient multithreaded code is often much more 

difficult than for single-threaded (i.e., sequential) code 

– Especially in common languages like Java and C 

– So typically stay sequential if possible 
 

From roughly 1980-2005, desktop computers got exponentially 

faster at running sequential programs 

– About twice as fast every couple years 
 

But nobody knows how to continue this 

– Increasing clock rate generates too much heat 

– Relative cost of memory access is too high 

– But we can keep making “wires exponentially smaller” 

(Moore’s “Law”), so put multiple processors on the same 

chip (“multicore”) 

 4 2/20/2013 



What to do with multiple processors? 

• Next computer you buy will likely have 4 processors 

– Wait a few years and it will be 8, 16, 32, … 

– The chip companies have decided to do this (not a “law”) 

 

• What can you do with them? 

– Run multiple totally different programs at the same time 

• Already do that? Yes, but with time-slicing 

– Do multiple things at once in one program 

• Our focus – more difficult 

• Requires rethinking everything from asymptotic 

complexity to how to implement data-structure operations 

 

5 2/20/2013 



Parallelism vs. Concurrency 

Note: Terms not yet standard but the perspective is essential 

– Many programmers confuse these concepts 

6 

There is some connection: 

– Common to use threads for both 

– If parallel computations need access to shared resources, 

then the concurrency needs to be managed 

Parallelism:  

   Use extra resources to  

   solve a problem faster 

resources 

Concurrency: 

  Correctly and efficiently manage  

  access to shared resources 

requests work 

resource 

2/20/2013 



An analogy 

CS1 idea: A program is like a recipe for a cook 

– One cook who does one thing at a time! (Sequential) 

 

Parallelism: (Let’s get the job done faster!) 

– Have lots of potatoes to slice?  

– Hire helpers, hand out potatoes and knives 

– But too many chefs and you spend all your time coordinating 

 

Concurrency: (We need to manage a shared resource) 

– Lots of cooks making different things, but only 4 stove burners 

– Want to allow access to all 4 burners, but not cause spills or 

incorrect burner settings 

7 2/20/2013 



Parallelism Example 

Parallelism: Use extra computational resources to solve a problem 

faster (increasing throughput via simultaneous execution) 
 

Pseudocode  (not Java yet) for array sum: 

– No such ‘FORALL’ construct, but we’ll see something similar 

– Bad style, but with 4 processors may get roughly 4x speedup 

8 

int sum(int[] arr){ 
  res = new int[4]; 
  len = arr.length; 
  FORALL(i=0; i < 4; i++) { //parallel iterations 
    res[i] = sumRange(arr,i*len/4,(i+1)*len/4); 
  } 
  return res[0]+res[1]+res[2]+res[3]; 
} 
int sumRange(int[] arr, int lo, int hi) { 
   result = 0; 
   for(j=lo; j < hi; j++) 
      result += arr[j]; 
   return result; 
} 

2/20/2013 



Concurrency Example 

Concurrency: Correctly and efficiently manage access to shared 

resources (from multiple possibly-simultaneous clients) 
 Ex: Multiple threads accessing a hash-table, but not getting in each others’ ways 

Pseudocode  (not Java) for a shared chaining hashtable 

– Essential correctness issue is preventing bad interleavings 

– Essential performance issue not preventing good concurrency 
• One ‘solution’ to preventing bad inter-leavings is to do it all sequentially 

9 

class Hashtable<K,V> { 
   … 
   void insert(K key, V value) { 
      int bucket = …; 
      prevent-other-inserts/lookups in table[bucket] 
      do the insertion 
      re-enable access to table[bucket] 
   } 
   V lookup(K key) { 
 (similar to insert, but can allow concurrent  
  lookups to same bucket) 
   } 
} 

2/20/2013 



Shared memory with Threads 

The model we will assume is shared memory with explicit threads 
 

Old story: A running program has 

– One program counter (current statement executing) 

– One call stack (with each stack frame holding local variables)  

– Objects in the heap created by memory allocation (i.e., new)  

• (nothing to do with data structure called a heap) 

– Static fields 
 

New story: 

– A set of threads, each with its own program counter & call stack 

• No access to another thread’s local variables 

– Threads can (implicitly) share static fields / objects 

• To communicate, write values to some shared location that  

another thread reads from 
10 2/20/2013 



Old Story : one call stack, one pc  

11 

… 

Heap for all objects  

and static fields 
•Call stack with local variables 

•pc determines current statement 

•local variables are numbers/null  

or heap references 

pc=0x… 

…
 

11 



New Story: Shared memory with Threads  

… 

Heap for all objects  

and static fields, shared 

by all threads 
Threads, each with own unshared  

call stack and “program counter”  

pc=0x… 

…
 

pc=0x… 

…
 

pc=0x… 

…
 

12 



Other models 

We will focus on shared memory, but you should know several 

other models exist and have their own advantages 
 

• Message-passing: Each thread has its own collection of objects.  

Communication is via explicitly sending/receiving messages 

– Cooks working in separate kitchens, mail around ingredients 
 

• Dataflow: Programmers write programs in terms of a DAG.  

     A node executes after all of its predecessors in the graph 

– Cooks wait to be handed results of previous steps 
 

• Data parallelism: Have primitives for things like “apply function 

to every element of an array in parallel” 
 

13 2/20/2013 



Our Needs 

To write a shared-memory parallel program, need new primitives 

from a programming language or library 

 

• Ways to create and run multiple things at once 

– Let’s call these things threads 

 

• Ways for threads to share memory  

– Often just have threads with references to the same objects 

 

• Ways for threads to coordinate (a.k.a. synchronize) 

– For now, a way for one thread to wait for another to finish 

– Other primitives when we study concurrency 

14 2/20/2013 



Java basics 

First learn some basics built into Java via java.lang.Thread 

– Then a better library for parallel programming 
 

To get a new thread running: 

1. Define a subclass C of java.lang.Thread, overriding run 

2. Create an object of class C 

3. Call that object’s start method 

• start sets off a new thread, using run as its “main” 
 

What if we instead called the run method of C? 

– This would just be a normal method call, in the current thread 

 

Let’s see how to share memory and coordinate via an example… 

 

 

 

 

 

 

15 2/20/2013 



Parallelism idea 

• Example: Sum elements of a large array  

• Idea: Have 4 threads simultaneously sum 1/4 of the array 

– Warning: This is an inferior first approach 

 

 
 

           ans0         ans1        ans2         ans3 

                                                       + 

                                                     ans 
 

– Create 4 thread objects, each given a portion of the work 

– Call start() on each thread object to actually run it in parallel 

– Wait for threads to finish using join() 

– Add together their 4 answers for the final result 

 

16 2/20/2013 



First attempt, part 1 

17 

class SumThread extends java.lang.Thread { 
 
  int lo; // fields, passed to constructor 
  int hi; // so threads know what to do. 
  int[] arr; 
 
  int ans = 0; // result  
     
  SumThread(int[] a, int l, int h) {  
    lo=l; hi=h; arr=a; 
  } 
 
 
  public void run() { //override must have this type 
    for(int i=lo; i < hi; i++) 
      ans += arr[i]; 
  } 
} 
 

Because we must override a no-arguments/no-result run,  

we use fields to communicate across threads 

2/20/2013 



First attempt, continued (wrong) 

18 

class SumThread extends java.lang.Thread { 
  int lo, int hi, int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ … } // override 
} 

int sum(int[] arr){ // can be a static method 
  int len = arr.length; 
  int ans = 0; 
  SumThread[] ts = new SumThread[4]; 
  for(int i=0; i < 4; i++) // do parallel computations 
    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 
  for(int i=0; i < 4; i++) // combine results 
    ans += ts[i].ans; 
  return ans; 
} 

2/20/2013 



Second attempt (still wrong) 

19 

int sum(int[] arr){// can be a static method 
  int len = arr.length; 
  int ans = 0; 
  SumThread[] ts = new SumThread[4]; 
  for(int i=0; i < 4; i++){// do parallel computations 
    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 
    ts[i].start(); // start not run 
  } 
  for(int i=0; i < 4; i++) // combine results 
    ans += ts[i].ans; 
  return ans; 
} 

class SumThread extends java.lang.Thread { 
  int lo, int hi, int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ … } // override 
} 

2/20/2013 



Third attempt (correct in spirit) 

20 

 
int sum(int[] arr){// can be a static method 
  int len = arr.length; 
  int ans = 0; 
  SumThread[] ts = new SumThread[4]; 
  for(int i=0; i < 4; i++){// do parallel computations 
    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 
    ts[i].start();  
  } 
  for(int i=0; i < 4; i++) { // combine results 
    ts[i].join(); // wait for helper to finish! 
    ans += ts[i].ans; 
  } 
  return ans; 
} 

class SumThread extends java.lang.Thread { 
  int lo, int hi, int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ … } // override 
} 

2/20/2013 



Join: Our “wait” method for Threads 

• The Thread class defines various methods you could not 

implement on your own 

– For example: start, which calls run in a new thread 
 

• The join method is valuable for coordinating this kind of 

computation 

– Caller blocks until/unless the receiver is done executing 
(meaning the call to run finishes) 

– Else we would have a race condition on ts[i].ans 
 

• This style of parallel programming is called “fork/join” 
 

• Java detail: code has 1 compile error because join may throw 

java.lang.InterruptedException 

– In basic parallel code, should be fine to catch-and-exit 

21 2/20/2013 



Shared memory? 

• Fork-join programs (thankfully) do not require much focus on 

sharing memory among threads 

 

• But in languages like Java, there is memory being shared.       

In our example: 

– lo, hi, arr fields written by “main” thread, read by helper 

thread 

– ans field written by helper thread, read by “main” thread 

 

• When using shared memory, you must avoid race conditions 

– While studying parallelism, we’ll stick with join 

– With concurrency, we will learn other ways to synchronize 

 

22 2/20/2013 



A better approach 

Several reasons why this is a poor parallel algorithm 
 

1. Want code to be reusable and efficient across platforms 

– “Forward-portable” as core count grows 

– So at the very least, parameterize by the number of threads 

 

 

23 

int sum(int[] arr, int numTs){ 
  int ans = 0; 
  SumThread[] ts = new SumThread[numTs]; 
  for(int i=0; i < numTs; i++){ 
   ts[i] = new SumThread(arr,(i*arr.length)/numTs, 
                             ((i+1)*arr.length)/numTs); 
   ts[i].start(); 
  } 
  for(int i=0; i < numTs; i++) {  
    ts[i].join();  
    ans += ts[i].ans; 
  } 
  return ans; 
} 
 2/20/2013 



A Better Approach 

2. Want to use (only) processors “available to you now” 
 

– Not used by other programs or threads in your program 

• Maybe caller is also using parallelism 

• Available cores can change even while your threads run 
 

– If you have 3 processors available and using 3 threads would 
take time X, then creating 4 threads would take time 1.5X 

• Example: 12 units of work, 3 processors  

– Work divided into 3 parts will take 4 units of time 

– Work divided into 4 parts will take 3*2 units of time 

 

 

 

24 

// numThreads == numProcessors is bad 
// if some are needed for other things 
int sum(int[] arr, int numTs){ 
  … 
} 
 

2/20/2013 



A Better Approach 

3. Though unlikely for sum, in general subproblems may take 

significantly different amounts of time 

 

– Example: Apply method f to every array element, but maybe 

f is much slower for some data items 

• Example: Is a large integer prime? 

 

– If we create 4 threads and all the slow data is processed by 1 

of them, we won’t get nearly a 4x speedup 

• Example of a load imbalance 

 

 

 

25 2/20/2013 



The counterintuitive (?) solution to all these problems is to cut up our 

problem into many pieces, far more than the number of processors 

– But this will require changing our algorithm 

– And for constant-factor reasons, abandoning Java’s threads 

 

 

A Better Approach 

26 

 
 

           ans0         ans1          …         ansN 

                         ans 

1. Forward-portable: Lots of helpers each doing a small piece 

2. Processors available: Hand out “work chunks” as you go 

• If 3 processors available and have 100 threads, then ignoring 

constant-factor overheads, extra time is < 3% 

3. Load imbalance: No problem if slow thread scheduled early enough 

• Variation probably small anyway if pieces of work are small 

 

 

2/20/2013 



Naïve algorithm is poor 

Suppose we create 1 thread to process every 1000 elements 

 

27 

int sum(int[] arr){ 
  … 
  int numThreads = arr.length / 1000; 
  SumThread[] ts = new SumThread[numThreads]; 
  … 
} 

Then the “combining of results” part of the code will have 
arr.length / 1000  additions  

• Linear in size of array (with constant factor 1/1000) 

• Previous we had only 4 pieces (Ө(1) to combine) 
 

• In the extreme, suppose we create one thread per element – If 

we use a for loop to combine the results, we have N iterations  

• In either case we get a Ө(N) algorithm with the combining of 

results as the bottleneck…. 

 
2/20/2013 



A better idea: Divide and Conquer! 

This will start small, and ‘grow’ threads to fit the problem 

This is straightforward to implement using divide-and-conquer 

– Parallelism for the recursive calls 

 

 

28 

+ + + + + + + + 

+ + + + 

+ + 

+ 

2/20/2013 

1) Divide problem into pieces recursively: 

– Start with full problem at root 

– Halve and make new thread until size is at some cutoff 

2) Combine answers in pairs as we return from recursion (see diagram) 



Remember Mergesort? 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8        2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 

29 



Code looks something like this (still using Java Threads) 

The key is to do the result-combining in parallel as well 

– And using recursive divide-and-conquer makes this natural 

– Easier to write and more efficient asymptotically! 

30 

class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ // override 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); 
      left.join(); // don’t move this up a line – why? 
      right.join(); 
      ans = left.ans + right.ans; 
    } 
  } 
} 
int sum(int[] arr){ // just make one thread! 
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); 
   return t.ans; 
} 2/20/2013 



Divide-and-conquer really works 

• The key is divide-and-conquer parallelizes the result-combining 

– If you have enough processors, total time is height of the tree: 
O(log n) (optimal, exponentially faster than sequential O(n)) 

– Next lecture: study reality of P << n processors 
 

• Will write all our parallel algorithms in this style 

– But using a special library engineered for this style 

• Takes care of scheduling the computation well 

– Often relies on operations being associative (like +) 

31 

+ + + + + + + + 

+ + + + 

+ + 

+ 
2/20/2013 



Thread: sum range [0,10) 

 Thread: sum range [0,5) 

  Thread: sum range [0,2)  

   Thread: sum range [0,1) (return arr[0]) 

   Thread: sum range [1,2) (return arr[1]) 

   add results from two helper threads 

  Thread: sum range [2,5) 

   Thread: sum range [2,3) (return arr[2]) 

   Thread: sum range [3,5) 

    Thread: sum range [3,4) (return arr[3]) 

    Thread: sum range [4,5) (return arr[4]) 

    add results from two helper threads  

   add results from two helper threads 

  add results from two helper threads 

 Thread: sum range [5,10) 

  Thread: sum range [5,7) 

   Thread: sum range [5,6) (return arr[5]) 

   Thread: sum range [6,7) (return arr[6]) 

   add results from two helper threads 

  Thread: sum range [7,10) 

   Thread: sum range [7,8) (return arr[7]) 

   Thread: sum range [8,10) 

    Thread: sum range [8,9) (return arr[8]) 

    Thread: sum range [9,10) (return arr[9]) 

    add results from two helper threads 

   add results from two helper threads 

 add results from two helper threads 

Example: summing  

an array with 10 elements.  

 (too small to actually want to  

use parallelism) 

 

The algorithm produces the  

following tree of recursion,  

where the range  [i,j)  

includes i and excludes j: 

 
 

32 

Recursive problem decomposition 



Being realistic 

• In theory, you can divide down to single elements, do all your 

result-combining in parallel and get optimal speedup 

– Total time O(n/numProcessors  + log n) 
 

• In practice, creating all those threads and communicating 

swamps the savings, so do two things to help: 

1. Use a sequential cutoff, typically around 500-1000 

• Eliminates almost all the recursive thread creation 

(bottom levels of tree) 

• Exactly like quicksort switching to insertion sort for small 

subproblems, but more important here 

2. Do not create two recursive threads; create one thread and 

do the other piece of work “yourself” 

• Cuts the number of threads created by another 2x 

33 2/20/2013 



Half the threads! 

• If a language had built-in support for fork-join parallelism, I 

would expect this hand-optimization to be unnecessary 

• But the library we are using expects you to do it yourself 

– And the difference is surprisingly substantial 

• Again, no difference in theory 

// wasteful: don’t 
SumThread left  = … 
SumThread right = … 
 
left.start(); 
right.start(); 
 
 
 
left.join();  
right.join(); 
ans=left.ans+right.ans; 

// better: do!! 
SumThread left  = … 
SumThread right = … 
 
left.start(); 
right.run(); 
 

 

 
left.join(); 
// no right.join needed 
ans=left.ans+right.ans; 

order of last 4 lines 
Is critical – why? 

Note: run is a 

normal function call! 

execution won’t  

continue until we  

are done with run 

34 



Fewer threads pictorially 

35 

+ 

5 
+ 

3 

+ 

6 

+ 

2 

+ 

7 
+ 

4 

+ 

8 

+ 

1 
+ 

3 

+ 

2 

+ 

4 

+ 

1 
+ 

2 

+ 

1 +

1 

2 new 

threads 

at each step 

(and only leaf threads 

do much work) 

Total = 15 threads 

1 new 

thread 

at each step 

Total = 8 threads 

+ 

8 
+ 

9 

+ 

10 

+ 

11 

  + 

12 

+ 

13 

  + 

14 
+ 

15 
+ 

4 

+ 

5 

+ 

6 

+ 

7 
+ 

2 

+ 

3 +

1 

2/20/2013 



That library, finally 

• Even with all this care, Java’s threads are too “heavyweight” 

– Constant factors, especially space overhead 

– Creating 20,000 Java threads just a bad idea  
 

• The ForkJoin Framework is designed to meet the needs of divide-

and-conquer fork-join parallelism 

– In the Java 7 standard libraries 

• (Also available for Java 6 as a downloaded .jar file) 

– Section will focus on pragmatics/logistics 

– Similar libraries available for other languages  

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks 

• C#: Task Parallel Library 

• … 

– Library’s implementation is a fascinating but advanced topic 

36 2/20/2013 



Different terms, same basic idea 

To use the ForkJoin Framework: 

• A little standard set-up code (e.g., create a ForkJoinPool) 

 

     Java Threads:   ForkJoin Framework: 

Don’t subclass Thread         Do subclass RecursiveTask<V> 

Don’t override run        Do override compute 

Do not use an ans field        Do return a V from compute 

Don’t call start        Do call fork 

Don’t just call join    Do call join (which returns answer) 

Don’t call run to hand-optimize    Do call compute to hand-optimize 

Don’t have a topmost call to run Do create a pool and call invoke 

 

See the web page for (linked in to project 3 description): 

 “A Beginner’s Introduction to the ForkJoin Framework” 

 37 2/20/2013 



Fork Join Framework Version: (missing imports) 

38 

class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // fields to know what to do 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; // local var, not a field 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); // fork a thread and calls compute 
      int rightAns = right.compute();//call compute directly 
      int leftAns  = left.join(); // get result from left 
      return leftAns + rightAns; 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
 // invoke returns the value compute returns 
} 

2/20/2013 



Getting good results in practice 

• Sequential threshold 

– Library documentation recommends doing approximately  

100-5000 basic operations in each “piece” of your algorithm 
 

• Library needs to “warm up” 

– May see slow results before the Java virtual machine re-

optimizes the library internals  

– Put your computations in a loop to see the “long-term benefit” 
 

• Wait until your computer has more processors  

– Seriously, overhead may dominate at 4 processors, but 

parallel programming is likely to become much more important 
 

• Beware memory-hierarchy issues  

– Won’t focus on this, but often crucial for parallel performance 

39 2/20/2013 



Handouts 

 

40 



Java Threads: Third attempt (correct in spirit) 

41 

------------------------------------------------------ 
int sum(int[] arr){// can be a static method 
  int len = arr.length; 
  int ans = 0; 
  SumThread[] ts = new SumThread[4]; 
  for(int i=0; i < 4; i++){// do parallel computations 
    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 
    ts[i].start();  
  } 
  for(int i=0; i < 4; i++) { // combine results 
    ts[i].join(); // wait for helper to finish! 
    ans += ts[i].ans; 
  } 
  return ans; 
} 

class SumThread extends java.lang.Thread { 
  int lo, int hi, int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h){lo=l; hi=h; arr=a;} 
  public void run() { //override must have this type 
    for(int i=lo; i < hi; i++) 
      ans += arr[i]; 
  } 
} 

2/20/2013 



Thread: sum range [0,10) 

 Thread: sum range [0,5) 

  Thread: sum range [0,2)  

   Thread: sum range [0,1) (return arr[0]) 

   Thread: sum range [1,2) (return arr[1]) 

   add results from two helper threads 

  Thread: sum range [2,5) 

   Thread: sum range [2,3) (return arr[2]) 

   Thread: sum range [3,5) 

    Thread: sum range [3,4) (return arr[3]) 

    Thread: sum range [4,5) (return arr[4]) 

    add results from two helper threads  

   add results from two helper threads 

  add results from two helper threads 

 Thread: sum range [5,10) 

  Thread: sum range [5,7) 

   Thread: sum range [5,6) (return arr[5]) 

   Thread: sum range [6,7) (return arr[6]) 

   add results from two helper threads 

  Thread: sum range [7,10) 

   Thread: sum range [7,8) (return arr[7]) 

   Thread: sum range [8,10) 

    Thread: sum range [8,9) (return arr[8]) 

    Thread: sum range [9,10) (return arr[9]) 

    add results from two helper threads 

   add results from two helper threads 

 add results from two helper threads 

Example: summing  

an array with 10 elements.  

 (too small to actually want to  

use parallelism) 

 

The algorithm produces the  

following tree of recursion,  

where the range  [i,j)  

includes i and excludes j: 

 
 

42 

Recursive problem decomposition 



Java Threads Version (final thread-saving idea in comments) 

The key is to do the result-combining in parallel as well 

– And using recursive divide-and-conquer makes this natural 

– Easier to write and more efficient asymptotically! 

43 

class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr; // fields to know what to do 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ // override 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); // change this to run() to save threads 
      left.join(); // don’t move this up a line – why? 
      right.join(); // not needed if you used right.run 
      ans = left.ans + right.ans; 
    } 
  } 
} 
int sum(int[] arr){// just make one thread! 
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); 
   return t.ans; 
} 2/20/2013 



Fork Join Framework Version: (missing imports) 

44 

class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // fields to know what to do 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; // local var, not a field 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); // fork a thread and calls compute 
      int rightAns = right.compute();//call compute directly 
      int leftAns  = left.join(); // get result from left 
      return leftAns + rightAns; 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
 // invoke returns the value compute returns 
} 

2/20/2013 


