

CSE 332: Data Abstractions

Lecture 14: Introduction to Graphs

Ruth Anderson Winter 2013

Announcements

- Midterm Monday Feb 11th during lecture, info about midterm has been posted
 - Review session Sat noon, EEB 037
 - Ruth has extra office hours Mon Feb 11th, 12:30pm-2pm
- Homework 4 due Friday Feb 15th at the BEGINNING of lecture
- Project 2 Phase B due Tues Feb 19th at 11pm

Today

- Sorting
 - Beyond comparison sorting
- Graphs
 - Intro & Definitions

Where We Are

We have learned about the essential ADTs and data structures:

- Regular and Circular Arrays (dynamic sizing)
- Linked Lists
- Stacks, Queues
- Priority Queues, Heaps
- Unbalanced and Balanced Search Trees, B-Trees
- Hash Tables

We have also learned important algorithms

- Tree traversals
- Floyd's buildheap Method
- Sorting algorithms

Where We Are Going

More on algorithms and related problems that require constructing data structures to make the solutions efficient

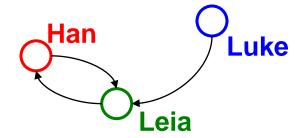
Topics will include:

- Graphs
- Parallelism
- Concurrency

Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair

$$G = (V, E)$$


A set of vertices, also known as nodes

$$V = \{v_1, v_2, ..., v_n\}$$

A set of edges

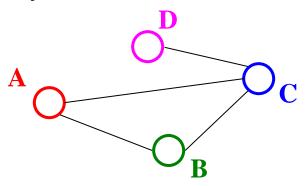
$$E = \{e_1, e_2, ..., e_m\}$$

- Each edge e_i is a pair of vertices
 (v_i, v_k)
- An edge "connects" the vertices
- Graphs can be directed or undirected

An ADT?

- Can think of graphs as an ADT with operations like isEdge ((v_i, v_k))
- But it is unclear what the "standard operations" are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 - 1. Formulating them in terms of graphs
 - 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs

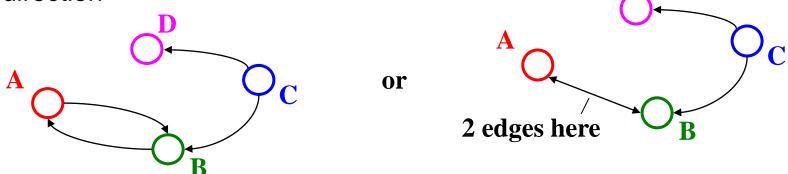
Some graphs


For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Wow: Using the same algorithms for problems across so many domains sounds like "core computer science and engineering"

Undirected Graphs

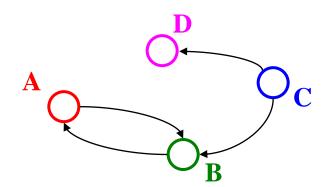

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

- Thus, $(u,v) \in E$ implies $(v,u) \in E$.
 - Only one of these edges needs to be in the set; the other is implicit
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed Graphs

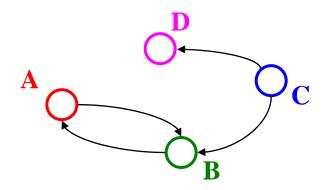
In directed graphs (sometimes called digraphs), edges have a direction

- Thus, $(u,v) \in E$ does not imply $(v,u) \in E$.
 - Let (u, v) ∈ E mean u → v
 - Call u the source and v the destination
- In-Degree of a vertex: number of in-bound edges,
 i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges
 i.e., edges where the vertex is the source


Self-edges, connectedness

- A self-edge a.k.a. a loop is an edge of the form (u,u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected (In an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree

More notation


For a graph G = (V, E):

- |V| is the number of vertices
- |E| is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

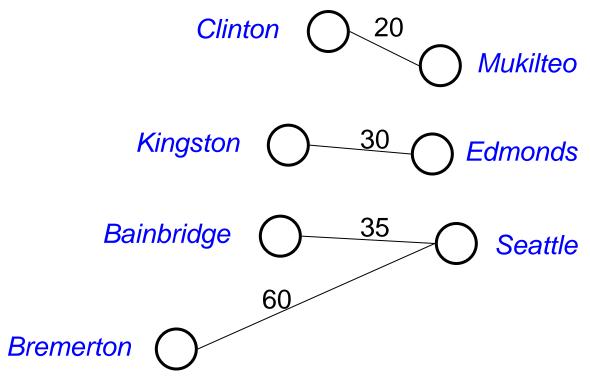
- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$

More notation

For a graph G = (V, E):

- |V| is the number of vertices
- |E| is the number of edges
 - Minimum?
 - Maximum for undirected? $|V||V+1|/2 \in O(|V|^2)$
 - Maximum for directed? |V|² ∈ O(|V|²)
 (assuming self-edges allowed, else subtract |V|)
- If $(u,v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v,u) \in E$

Examples again


Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

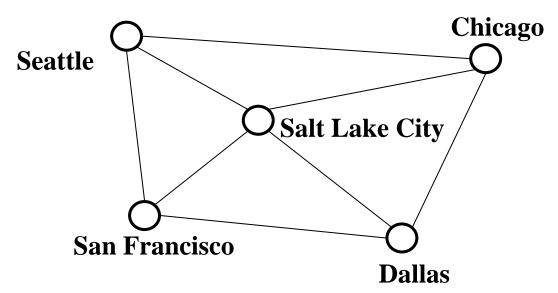
- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

• ...

Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don't

Examples

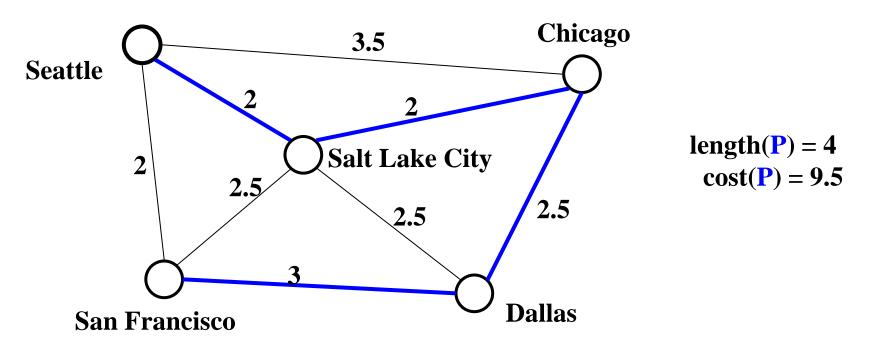

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

• ...

Paths and Cycles

- A path is a list of vertices $[\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_n]$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in \mathbf{E}$ for all $0 \le i < n$. Say "a path from \mathbf{v}_0 to \mathbf{v}_n "
- A cycle is a path that begins and ends at the same node $(\mathbf{v_0} == \mathbf{v_n})$

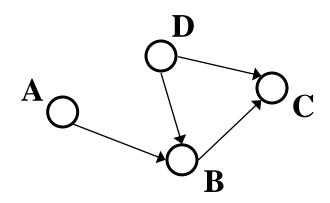

Example path (that also happens to be a cycle): [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path (also called "unweighted cost")
- Path cost: Sum of the weights of each edge

Example where:

P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco]

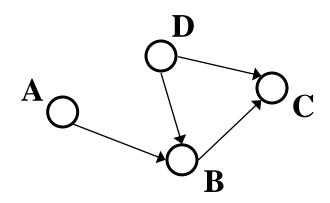


Simple paths and cycles

- A simple path repeats no vertices, (except the first might be the last):
 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is a cycle and a simple path:
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

Example:

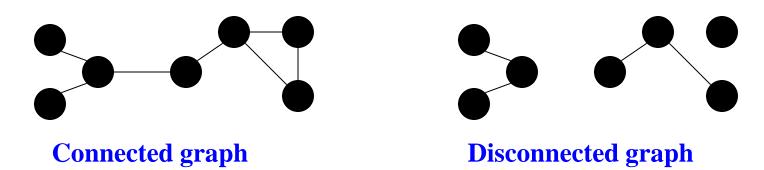


Is there a path from A to D?

Does the graph contain any cycles?

Paths/cycles in directed graphs

Example:

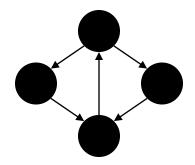


Is there a path from A to D? No

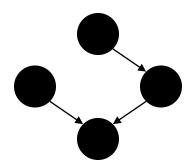
Does the graph contain any cycles? No

<u>Undirected</u> graph connectivity

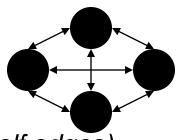
An undirected graph is connected if for all
pairs of vertices u, v, there exists a path from u to v



An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices u, v, there exists an edge from u to v


(plus self edges)

<u>Directed</u> graph connectivity


 A directed graph is strongly connected if there is a path from every vertex to every other vertex

 A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

 A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

(plus self edges)

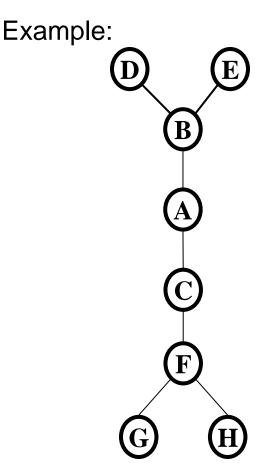
Examples

For <u>undirected</u> graphs: connected?

For <u>directed</u> graphs: strongly connected? weakly connected?

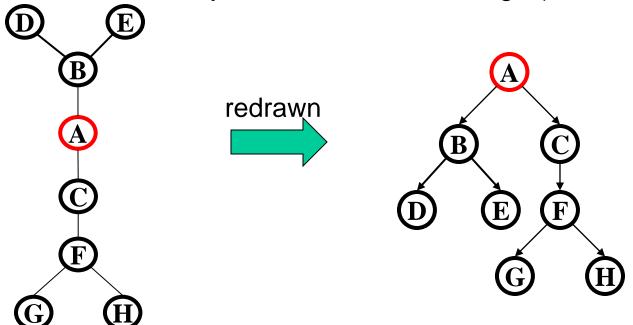
- Web pages with links
- Facebook friends
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

• ...

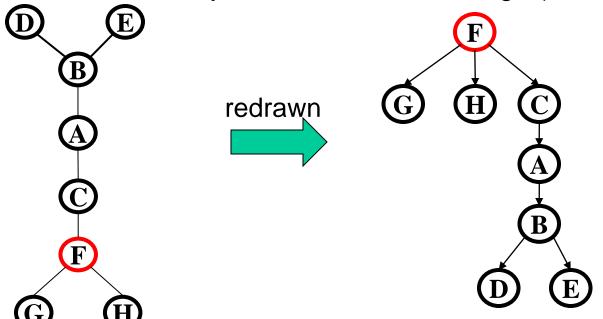

Trees as graphs

When talking about graphs, we say a tree is a graph that is:

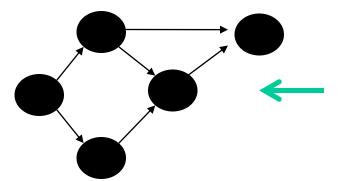
- undirected
- acyclic
- connected


So all trees are graphs, but not all graphs are trees

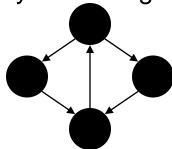
How does this relate to the trees we know and love?...


Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)


Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children
- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)


Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

Not a rooted directed tree, Has a cycle (in the undirected sense)

- Every DAG is a directed graph
 - But not every directed graph is a DAG:

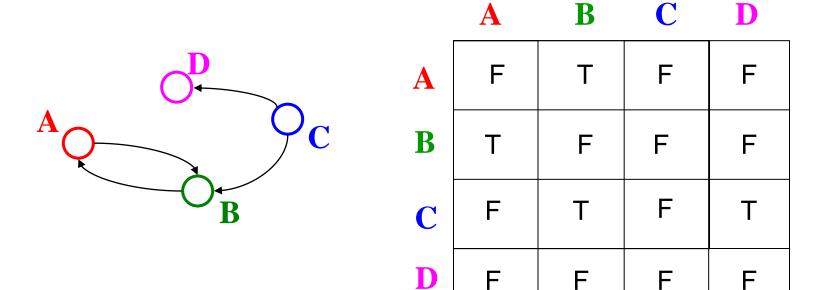
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

• ...

Density / sparsity


- Recall: In an undirected graph, $0 \le |E| < |V|^2$
- Recall: In a directed graph: $0 \le |E| \le |V|^2$
- So for any graph, |E| is $O(|V|^2)$
- One more fact: If an undirected graph is *connected*, then $|E| \ge |V|-1$
- Because |E| is often much smaller than its maximum size, we do not always approximate as |E| as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., |E| is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If |E| is O(|V|) we say the graph is sparse
 - More sloppily, sparse means "most (possible) edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- The "best one" can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., "is (u,v) an edge?" versus
 "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency matrix

- Assign each node a number from 0 to |V|-1
- A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then M[u][v] == true means there is an edge from u to v

- Running time to:
 - Get a vertex's out-edges:
 - Get a vertex's in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
- Best for sparse or dense graphs?

		D		D
A	F	Т	F	F
В	Т	F	F	F
C	F	Т	F	Т
D	F	F	F	F

 \mathbf{R}

- Running time to:
 - Get a vertex's out-edges: O(|V|)
 - Get a vertex's in-edges: O(|V|)
 - Decide if some edge exists: O(1)
 - Insert an edge: O(1)
 - Delete an edge: O(1)
- Space requirements:
 - $|V|^2$ bits
- Best for sparse or dense graphs?
 - Best for dense graphs

	A	D		D
A	F	Т	Щ	F
B	Т	F	F	F
C	F	Т	F	Т
D	F	F	F	F

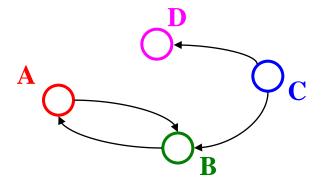
How will the adjacency matrix vary for an undirected graph?

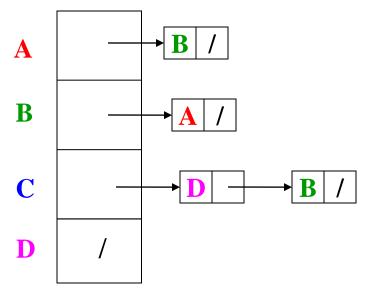
How can we adapt the representation for weighted graphs?

	A	В	C	D
A	F	Т	F	F
B	٦	F	F	F
C	F	Т	F	Т
D	F	F	F	F

2/08/2013

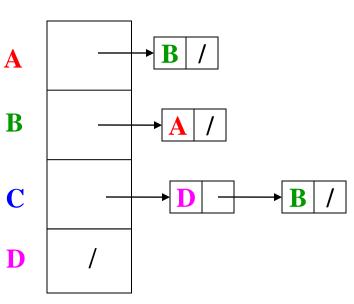
35


- How will the adjacency matrix vary for an undirected graph?
 - Undirected will be symmetric about diagonal axis
- How can we adapt the representation for weighted graphs?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent 'not an edge'
 - In some situations, 0 or -1 works

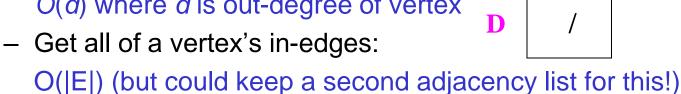

A	F	Т	L	F
В	Т	F	F	F
C	F	Т	F	Т
D	F	F	F	F

B

Adjacency List


- Assign each node a number from 0 to |V|-1
- An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

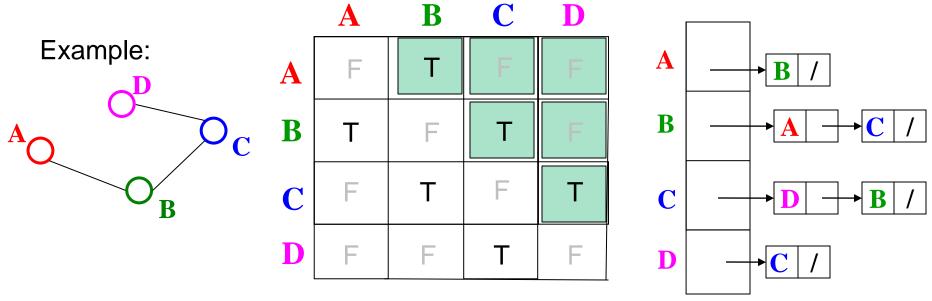
Adjacency List Properties


- Running time to:
 - Get all of a vertex's out-edges:
 - Get all of a vertex's in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?

Adjacency List Properties

A B /

- Running time to:
 - Get all of a vertex's out-edges:
 O(d) where d is out-degree of vertex



- Decide if some edge exists:
 O(d) where d is out-degree of source
- Insert an edge: O(1) (unless you need to check if it's there)
- Delete an edge: O(d) where d is out-degree of source
- Space requirements:
 - O(|V| + |E|)
- Best for dense or sparse graphs?
 - Best for sparse graphs, so usually just stick with linked lists

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly ½ the space
 - But may slow down operations in languages with "proper" 2D arrays (not Java, which has only arrays of arrays)
 - How would you "get all neighbors"?
- Lists: Each edge in two lists to support efficient "get all neighbors"

2/08/2013

40

Which is better?

Graphs are often sparse:

- Streets form grids
 - every corner is not connected to every other corner
- Airlines rarely fly to all possible cities
 - or if they do it is to/from a hub rather than directly to/from all small cities to other small cities

Adjacency lists should generally be your default choice

Slower performance compensated by greater space savings

Next...

Okay, we can represent graphs

Now let's implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path