
CSE 332: Data Abstractions

Lecture 10:Hashing

Ruth Anderson

Winter 2013

Announcements

• Project 2 – let us know by tonight if you plan on working with a

partner. Phase A due next Wednesday

• Homework 3– due Friday Feb 1st at the BEGINNING of lecture

1/30/2013 2

Today

• Dictionaries

– Hashing

1/30/2013 3

Motivating Hash Tables

For dictionary with n key/value pairs

 insert find delete

• Unsorted linked-list O(1) O(n) O(n)

• Unsorted array O(1) O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

• Balanced tree O(log n) O(log n) O(log n)

1/30/2013 4

Hash Tables

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

• Basic idea:

1/30/2013 5

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Aside: Hash Tables vs. Balanced Trees

• In terms of a Dictionary ADT for just insert, find, delete, hash

tables and balanced trees are just different data structures

– Hash tables O(1) on average (assuming few collisions)

– Balanced trees O(log n) worst-case

• Constant-time is better, right?

– Yes, but you need “hashing to behave” (must avoid collisions)

– Yes, but findMin, findMax, predecessor, and successor

go from O(log n) to O(n), printSorted from O(n) to O(n log n)

• Why your textbook considers this to be a different ADT

• Not so important to argue over the definitions

1/30/2013 6

Hash Tables

• There are m possible keys (m typically large, even infinite)

• We expect our table to have only n items

• n is much less than m (often written n << m)

Many dictionaries have this property

– Compiler: All possible identifiers allowed by the language vs.

those used in some file of one program

– Database: All possible student names vs. students enrolled

– AI: All possible chess-board configurations vs. those

considered by the current player

– …

1/30/2013 7

Hash functions

An ideal hash function:

• Is fast to compute

• “Rarely” hashes two “used” keys to the same index

– Often impossible in theory; easy in practice

– Will handle collisions a bit later

1/30/2013 8

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Who hashes what?

• Hash tables can be generic

– To store elements of type E, we just need E to be:

1. Comparable: order any two E (like with all dictionaries)

2. Hashable: convert any E to an int

• When hash tables are a reusable library, the division of

responsibility generally breaks down into two roles:

1/30/2013 9

• We will learn both roles, but most programmers “in the real world”

spend more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

1/30/2013 10

Two roles must both contribute to minimizing collisions (heuristically)

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?

• We will focus on two most common things to hash: ints and strings

• If you have objects with several fields, it is usually best to have

most of the “identifying fields” contribute to the hash to avoid

collisions

• Example:
 class Person {

 String first; String middle; String last;

 Date birthdate;

 }

• An inherent trade-off: hashing-time vs. collision-avoidance

– Bad idea(?): Only use first name

– Good idea(?): Only use middle initial

– Admittedly, what-to-hash is often an unprincipled guess

1/30/2013 11

Hashing integers

key space = integers

Simple hash function:

 h(key) = key % TableSize

• Client: f(x) = x

• Library g(x) = f(x) % TableSize

• Fairly fast and natural

Example:

• TableSize = 10

• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

1/30/2013 12

0

1

2

3

4

5

6

7

8

9

Hashing integers (Soln)

1/30/2013 13

0 10

1 41

2

3

4 34

5

6

7 7

8 18

9

key space = integers

Simple hash function:

 h(key) = key % TableSize

• Client: f(x) = x

• Library g(x) = f(x) % TableSize

• Fairly fast and natural

Example:

• TableSize = 10

• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

Collision-avoidance

• With “x % TableSize” the number of collisions depends on

– the ints inserted (obviously)

– TableSize

• Larger table-size tends to help, but not always

– Example: 70, 24, 56, 43, 10

 with TableSize = 10 and TableSize = 60

• Technique: Pick table size to be prime. Why?

– Real-life data tends to have a pattern

– “Multiples of 61” are probably less likely than “multiples of 60”

– We’ll see some collision strategies do better with prime size

1/30/2013 14

More arguments for a prime table size
If TableSize is 60 and…

– Lots of data items are multiples of 5, wasting 80% of table

– Lots of data items are multiples of 10, wasting 90% of table

– Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…

– Collisions can still happen, but 5, 10, 15, 20, … will fill table

– Collisions can still happen but 10, 20, 30, 40, … will fill table

– Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then

 (a * x) % y == (b * x) % y if and only if a % y == b % y

– Given table size y and keys as multiples of x, we’ll get a decent

distribution if x & y are co-prime

– So good to have a TableSize that has no common factors

with any “likely pattern” x
1/30/2013 15

What if the key is not an int?

• If keys aren’t ints, the client must convert to an int

– Trade-off: speed and distinct keys hashing to distinct ints

• Common and important example: Strings

– Key space K = s0s1s2…sm-1

• where si are chars: si [0,256]

– Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

1

0

m

i

i

s

1

0

37

m

i

i

i
s

1/30/2013 16

Specializing hash functions

How might you hash differently if all your strings were web

addresses (URLs)?

1/30/2013 17

Aside: Combining hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash

– This is why a factor of 37i works better than 256i

– Example: “abcde” and “ebcda”

3. When smashing two hashes into one hash, use bitwise-xor

– bitwise-and produces too many 0 bits

– bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

1/30/2013 18

Collision resolution

Collision:

 When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

1/30/2013 19

Flavors of Collision Resolution

Separate Chaining

Open Addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

1/30/2013 20

Separate Chaining

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

1/30/2013 21

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Separate Chaining

1/30/2013 22

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

1/30/2013 23

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

1/30/2013 24

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

1/30/2013 25

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

1/30/2013 26

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Worst case time for find?

Thoughts on separate chaining

27

• Worst-case time for find?

– Linear

– But only with really bad luck or bad hash function

– So not worth avoiding (e.g., with balanced trees at each bucket)

• Keep # of items in each bucket small

• Overhead of AVL tree, etc. not worth it for small n

• Beyond asymptotic complexity, some “data-structure engineering”
can improve constant factors

– Linked list vs. array or a hybrid of the two

– Move-to-front (part of Project 2)

– Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

• A time-space trade-off…

1/30/2013

Time vs. space (constant factors only here)

1/30/2013 28

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

More rigorous separate chaining analysis

Definition: The load factor, , of a hash table is

1/30/2013 29

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is ___

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• How big should TableSize be??

More rigorous separate chaining analysis

Definition: The load factor, , of a hash table is

1/30/2013 30

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against items

• Each successful find compares against / 2 items

• If is low, find & insert likely to be O(1)

• We like to keep around 1 for separate chaining

Load Factor?

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ? =

5

10
= 0.5

1/30/2013 31

Load Factor?

0

1

2

3

4 /

5

6

7

8

9

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ? =

21

10
= 2.1

71 2 31 /

63 73 /

75 5 65 95 /

27 47

88 18 38 98 /

99 /

1/30/2013 32

Separate Chaining Deletion?

1/30/2013 33

Separate Chaining Deletion

34

• Not too bad

– Find in table

– Delete from bucket

• Say, delete 12

• Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

1/30/2013

