
CSE 332: Data Abstractions

Lecture 9: B Trees

Ruth Anderson
Winter 2013

Announcements

• Project 2 – posted!
Partner selection due by 11pm Wed 1/30 at the latest.

• Homework 3– due Friday Feb 1st posted later today

1/28/2013 2

Today

• Dictionaries
– B-Trees

1/28/2013 3

Our goal

• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even
shallower than AVL trees so that we can minimize disk
accesses and exploit disk-block size

• A key idea: Increase the branching factor of our tree

1/28/2013 4

M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4)

What is the height of this tree?
What is the worst case running time of find?

• Build some sort of search tree with branching factor M:
– Have an array of sorted children (Node[])

– Choose M to fit snugly into a disk block (1 access for array)

1/28/2013 5

M-ary Search Tree

• # hops for find?

– If we have a balanced M-ary tree:
– Approx. log M n hops instead of log 2 n (for balanced BST)

– Example: M = 256 (=28) and n = 240 that’s 5 hops instead of 40 hops
• Sounds good, but how do we decide which branch to take?

– Binary tree: Less than/greater than node value?
– M-ary: In range 1? In range 2? In range 3?... In range M?

• Runtime of find if balanced: O(log 2 M log M n)
– log M n is the height we traverse.

– log2M: At each step, find the correct child branch to take using binary
search among the M options!

1/28/2013 6

Questions about M-ary search trees

• What should the order property be?
• How would you rebalance (ideally without more disk accesses)?
• Storing real data at inner-nodes (like we do in a BST) seems kind of

wasteful…
– To access the node, will have to load the data from disk,

even though most of the time we won’t use it!!
– Usually we are just “passing through” a node on the way to the

value we are actually looking for.

So let’s use the branching-factor idea, but for a different kind of
balanced tree:
– Not a binary search tree
– But still logarithmic height for any M > 2

1/28/2013 7

B+ Trees (we and the book say “B Trees”)
• Two types of nodes: internal nodes

& leaves
• Each internal node has room for up

to M-1 keys and M children
– No other data; all data at the

leaves!
• Order property:

Subtree between keys a and b
contains only data that is ≥≥≥≥ a
and < b (notice the ≥≥≥≥)

• Leaf nodes have up to L sorted data
items

• As usual, we’ll ignore the “along for
the ride” data in our examples
– Remember no data at non-leaves

1/28/2013 8

3 7 12 21

21≤≤≤≤x12≤≤≤≤x<217≤≤≤≤x<123≤≤≤≤x<7x<3

Remember:
•Leaves store data
•Internal nodes are

‘signposts’

Find

• Different from BST in that we don’t store data at internal nodes

• But find is still an easy root-to-leaf recursive algorithm

– At each internal node do binary search on (up to) M-1 keys to
find the branch to take

– At the leaf do binary search on the (up to) L data items

• But to get logarithmic running time, we need a balance condition…

1/28/2013 9

3 7 12 21

21≤≤≤≤x12≤≤≤≤x<217≤≤≤≤x<123≤≤≤≤x<7x<3

Structure Properties
• Root (special case)

– If tree has ≤ L items, root is a leaf (occurs when starting up,
otherwise unusual)

– Else has between 2 and M children

• Internal nodes
– Have between M/2 and M children, i.e., at least half full

• Leaf nodes
– All leaves at the same depth
– Have between L/2 and L data items, i.e., at least half full

Any M > 2 and L will work, but:
We pick M and L based on disk-block size

1/28/2013 10

Example
Suppose M=4 (max # pointers in internal node)

and L=5 (max # data items at leaf)
– All internal nodes have at least 2 children
– All leaves have at least 3 data items (only showing keys)
– All leaves at same depth

1/28/2013 11

6
8
9
10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

19

24

1
2
4

Note on notation: Inner nodes drawn horizontally,
leaves vertically to distinguish. Include empty cells

Balanced enough

Not hard to show height h is logarithmic in number of data items n

• Let M > 2 (if M = 2, then a list tree is legal – no good!)

• Because all nodes are at least half full (except root may have
only 2 children) and all leaves are at the same level, the
minimum number of data items n for a height h>0 tree is…

n ≥≥≥≥ 2 M/2 h-1 L/2

1/28/2013 12

minimum number
of leaves

minimum data
per leaf

Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with M=128 and L=64?

1/28/2013 13

Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?
– Recall S(h) = 1 + S(h-1) + S(h-2)
– lecture7.xlsx reports: 37

• Maximum height of B tree with M=128 and L=64?
– Recall (2 M/2 h-1) L/2
– lecture9.xlsx reports: 5 (and 4 is more likely)
– Also not difficult to compute via algebra

1/28/2013 14

Disk Friendliness

What makes B trees so disk friendly?

• Many keys stored in one internal node
– All brought into memory in one disk access

• IF we pick M wisely
– Makes the binary search over M-1 keys totally worth it

(insignificant compared to disk access times)

• Internal nodes contain only keys
– Any find wants only one data item; wasteful to load

unnecessary items with internal nodes
– So only bring one leaf of data items into memory
– Data-item size doesn’t affect what M is

1/28/2013 15

Maintaining balance

• So this seems like a great data structure (and it is)

• But we haven’t implemented the other dictionary operations yet
– insert

– delete

• As with AVL trees, the hard part is maintaining structure properties
– Example: for insert , there might not be room at the correct

leaf

1/28/2013 16

Building a B-Tree (insertions)

1/28/2013 17

The empty B-
Tree (the root
will be a leaf at
the beginning)

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
3 3

18

3

14

18

Just need to keep data
in order

Insert(30)
3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30

1/28/2013 18

18

•When we ‘overflow’ a leaf, we split it into 2 leaves
•Parent gains another child
•If there is no parent (like here), we create one; how do we pick the key
shown in it?

•Smallest element in right tree

???

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3

32

32

36

32

32

36

32

15
1/28/2013 19

Split leaf again

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3

16

3

14

15

16

15

15 32

18

1/28/2013 20

Split the internal node
(in this case, the root)

What
now?

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3

1/28/2013 21

Note: Given the leavesand the structure of the tree, we
can always fill in internal node keys;
‘the smallest value in my right branch’

Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!
– Split the leaf into two nodes:

• Original leaf with (L+1)/2  smaller items
• New leaf with (L+1)/2  = L/2  larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

3. If step (2) caused the parent to have M+1 children, overflow!
– …

1/28/2013 22

Insertion algorithm continued

3. If an internal node has M+1 children
– Split the node into two nodes

• Original node with (M+1)/2  smaller items
• New node with (M+1)/2  = M/2  larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
– So repeat step 3 up the tree until a node doesn’t overflow
– If the root overflows, make a new root with two children

• This is the only case that increases the tree height

1/28/2013 23

Efficiency of insert

• Find correct leaf: O(log 2 M log M n)

• Insert in leaf: O(L)
• Split leaf: O(L)
• Split parents all the way up to root: O(M log M n)

Total: O(L + M log M n)

But it’s not that bad:
– Splits are not that common (only required when a node is FULL,

M and L are likely to be large, and after a split, will be half empty)
– Splitting the root is extremely rare
– Remember disk accesses were the name of the game:

O(log M n)

1/28/2013 24

B-Tree Reminder: Another dictionary

• Before we talk about deletion, just keep in mind overall idea:
– Large data sets won’t fit entirely in memory
– Disk access is slow
– Set up tree so we do one disk access per node in tree
– Then our goal is to keep tree shallow as possible
– Balanced binary tree is a good start, but we can do better

than log2n height
– In an M-ary tree, height drops to logMn

• Why not set M really really high? Height 1 tree…
• Instead, set M so that each node fits in a disk block

1/28/2013 25

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3

36

38

1/28/2013 26

Easy case: Leaf still has enough data; just remove

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16 18

30

36 40

36

38

18

40

45

M = 3 L = 3
1/28/2013 27

Is there a problem?

3

12

14

16

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45

1/28/2013 28

Adopt from neighbor!

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

1/28/2013 29

Is there a problem?

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14

1/28/2013 30

Merge with neighbor!

But hey, Is there a problem?

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

18

18

30

40

36

38

36

40

45

1/28/2013 31

Adopt from neighbor!

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

1/28/2013 32

Delete(14)

Delete(18)

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45

1/28/2013 33

Is there a problem?

3

12

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45

1/28/2013 34

Merge with neighbor!

But hey, Is there a problem?

3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

M = 3 L = 3

1/28/2013 35

Merge with neighbor!

But hey, Is there a problem?

36 40

3

12

30

36

38

40

45

M = 3 L = 3

36 40

3

12

30

3

36

38

40

45

1/28/2013 36

Pull out the root!

Deletion Algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has L/2  - 1 , underflow!
– If a neighbor has > L/2  items, adopt and update parent

– Else merge node with neighbor
• Guaranteed to have a legal number of items
• Parent now has one less node

3. If step (2) caused the parent to have M/2  - 1 children,
underflow!
– …

1/28/2013 37

Deletion algorithm (continued)

3. If an internal node has M/2  - 1 children
– If a neighbor has > M/2  items, adopt and update parent

– Else merge node with neighbor
• Guaranteed to have a legal number of items
• Parent now has one less node, may need to continue

up the tree

If we merge all the way up through the root, that’s fine unless the
root went from 2 children to 1
– In that case, delete the root and make child the root
– This is the only case that decreases tree height

1/28/2013 38

Worst-Case Efficiency of Delete

• Find correct leaf: O(log 2 M log M n)

• Remove from leaf: O(L)
• Adopt from or merge with neighbor: O(L)
• Adopt or merge all the way up to root: O(M log M n)

Total: O(L + M log M n)

But it’s not that bad:
– Merges are not that common
– Disk accesses are the name of the game: O(log M n)

1/28/2013 39

Insert vs delete comparison

Insert
• Find correct leaf:
• Insert in leaf:
• Split leaf:
• Split parents all the way up to root:

Delete
• Find correct leaf:
• Remove from leaf:
• Adopt/merge from/with neighbor leaf:
• Adopt or merge all the way up to root:

O(log 2 M log M n)
O(L)
O(L)
O(M log M n)

O(log 2 M log M n)
O(L)
O(L)
O(M log M n)

1/28/2013 40

B Trees in Java?

For most of our data structures, we have encouraged writing high-
level, reusable code, such as in Java with generics

It is worthwhile to know enough about “how Java works” to
understand why this is probably a bad idea for B trees
– If you just want a balanced tree with worst-case logarithmic

operations, no problem
• If M=3, this is called a 2-3 tree
• If M=4, this is called a 2-3-4 tree

– Assuming our goal is efficient number of disk accesses
• Java has many advantages, but it wasn’t designed for this

The key issue is extra levels of indirection…

1/28/2013 41

Naïve approach
Even if we assume data items have int keys, you cannot get the

data representation you want for “really big data”

interface Keyed {
int getKey ();

}
class BTreeNode <E implements Keyed> {

static final int M = 128;
int[] keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}
class BTreeLeaf <E implements Keyed> {

static final int L = 32;
E[] data = (E[]) new Object[L];
int numItems = 0;
…

}
1/28/2013 42

What that looks like

1/28/2013 43

BTreeNode (3 objects with “header words”)

M-1 122045

M

70

BTreeLeaf (data objects not in contiguous memory)

20

… (larger array)

… (larger array)

L … (larger array)

All the red references indicate
unnecessary indirection The moral

• The whole idea behind B trees was to keep related data in
contiguous memory

• But that’s “the best you can do” in Java
– Again, the advantage is generic, reusable code
– But for your performance-critical web-index, not the way to

implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening
objects into arrays”

• Levels of indirection matter!

1/28/2013 44

Conclusion: Balanced Trees

• Balanced trees make good dictionaries because they guarantee
logarithmic-time find , insert , and delete

– Essential and beautiful computer science
– But only if you can maintain balance within the time bound

• AVL trees maintain balance by tracking height and allowing all
children to differ in height by at most 1

• B trees maintain balance by keeping nodes at least half full and
all leaves at same height

• Other great balanced trees (see text; worth knowing they exist)
– Red-black trees: all leaves have depth within a factor of 2
– Splay trees: self-adjusting; amortized guarantee; no extra

space for height information

1/28/2013 45

