



# CSE 332: Data Abstractions Lecture 7: AVL Trees

Ruth Anderson Winter 2013

#### **Announcements**

- Project 2 posted!
- Homework 2 due Friday Jan 25<sup>th</sup> at <u>beginning</u> of class, see clarifications posted

1/23/2013

2

#### Today

- Dictionaries
  - AVL Trees

1/23/2013

#### The AVL Balance Condition:

Left and right subtrees of every node have heights differing by at most 1

Define: **balance**(x) = height(x.left) – height(x.right)

AVL property:  $-1 \le balance(x) \le 1$ , for every node x

- · Ensures small depth
  - Will prove this by showing that an AVL tree of height h must have a lot of (i.e. Θ(2<sup>h</sup>)) nodes
- Easy to maintain
  - Using single and double rotations

Note: height of a null tree is -1, height of tree with a single node is  ${\bf 0}$ 

1/23/2013 4

## The AVL Tree Data Structure

#### Structural properties

- 1. Binary tree property (0,1, or 2 children)
- 2. Heights of left and right subtrees of every node differ by at most 1

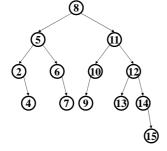
#### Result:

Worst case depth of any node is: O(log *n*)

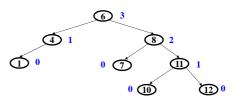
#### Ordering property

1/23/2013

Same as for BST



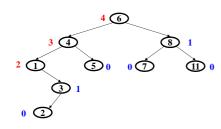
An AVL tree?



5 1/23/2013

6

#### An AVL tree?



1/23/2013

Let s(h) be the minimum # of nodes in an AVL tree of height h, then:

$$S(h) = S(h-1) + S(h-2) + 1$$
  
where  $S(-1)=0$  and  $S(0)=1$ 

 $\underline{h}$   $\underline{S(h)}$ 

1/23/2013 9

# Minimal AVL Tree (height = 1)



# Height of an AVL Tree?

Using the AVL balance property, we can determine the minimum number of nodes in an AVL tree of height h

Let s(h) be the minimum # of nodes in an AVL tree of height h, then:

$$\mathbf{S}(h) = \mathbf{S}(h-1) + \mathbf{S}(h-2) + 1$$
  
where  $\mathbf{S}(-1) = 0$  and  $\mathbf{S}(0) = 1$ 

Solution of Recurrence:  $S(h) \approx 1.62^h$ 

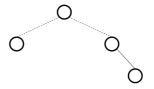
1/23/2013 8

# $Minimal\ AVL\ Tree\ (height=0)$

0

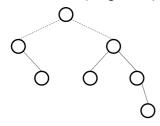
1/23/2013 10

# Minimal AVL Tree (height = 2)

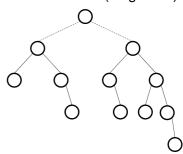


1/23/2013 11 1/23/2013 12

#### Minimal AVL Tree (height = 3)



## Minimal AVL Tree (height = 4)



1/23/2013 13

#### The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h

- If we can prove that S(h) grows exponentially in h, then a tree with n nodes has a logarithmic height
- Step 1: Define S(h) inductively using AVL property
  - S(-1)=0, S(0)=1, S(1)=2
  - For  $h \ge 1$ , S(h) = 1+S(h-1)+S(h-2)



- Step 2: Show this recurrence grows really fast
  - Similar to Fibonacci numbers
  - Can prove for all h,  $S(h) > \phi^h 1$  where  $\phi$  is the golden ratio,  $(1+\sqrt{5})/2$ , about 1.62
  - Growing faster than 1.6h is "plenty exponential"

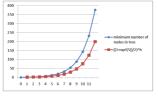
1/23/2013 15

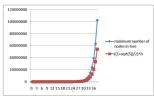
#### Before we prove it

- Good intuition from plots comparing:
  - S(h) computed directly from the definition
  - $-((1+\sqrt{5})/2)^h$

1/23/2013

- S(h) is always bigger, up to trees with huge numbers of nodes
  - Graphs aren't proofs, so let's prove it





1/23/2013 16

## The Golden Ratio

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.66$$



This is a special number

- Aside: Since the Renaissance, many artists and architects have proportioned their work (e.g., length:height) to approximate the golden ratio: If (a+b)/a = a/b, then a = φb
- We will need one special arithmetic fact about  $\phi$ :

$$\phi^{2} = ((1+5^{1/2})/2)^{2}$$

$$= (1 + 2*5^{1/2} + 5)/4$$

$$= (6 + 2*5^{1/2})/4$$

$$= (3 + 5^{1/2})/2$$

$$= 1 + (1 + 5^{1/2})/2$$

$$= 1 + \phi$$

1/23/2013 17

#### The proof

$$S(-1)=0$$
,  $S(0)=1$ ,  $S(1)=2$   
For  $h \ge 1$ ,  $S(h) = 1+S(h-1)+S(h-2)$ 

Theorem: For all  $h \ge 0$ ,  $S(h) > \phi^h - 1$ Proof: By induction on h

Base cases:

$$S(0) = 1 > \phi^0 - 1 = 0$$
  $S(1) = 2 > \phi^1 - 1 \approx 0.62$ 

Inductive case (k > 1):

Show  $S(k+1) > \phi^{k+1} - 1$  assuming  $S(k) > \phi^k - 1$  and  $S(k-1) > \phi^{k-1} - 1$ 

$$\begin{split} S(k+1) &= 1 + S(k) + S(k-1) & \text{by definition of } S \\ &> 1 + \varphi^k - 1 + \varphi^{k-1} - 1 & \text{by induction} \\ &= \varphi^k + \varphi^{k-1} - 1 & \text{by arithmetic (1-1=0)} \\ &= \varphi^{k-1} (\varphi + 1) - 1 & \text{by arithmetic (factor } \varphi^{k-1}) \\ &= \varphi^{k+1} \varphi^2 - 1 & \text{by special property of } \varphi \\ &= \varphi^{k+1} - 1 & \text{by arithmetic (add exponents)} \end{split}$$

1/23/2013 18

#### Good news

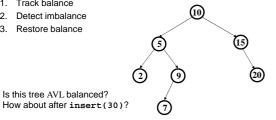
Proof means that if we have an AVL tree, then find is  $O(\log n)$ 

But as we insert and delete elements, we need to:

- 1. Track balance
- 2. Detect imbalance

Is this tree AVL balanced?

Restore balance



# An AVL Tree 10 key value 3 height children

1/23/2013

# AVL tree operations

#### AVL find:

- Same as BST find

#### AVL insert:

- First BST insert, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases

#### • AVL delete:

- The "easy way" is lazy deletion
- Otherwise, like insert we do the deletion and then have several imbalance cases

1/23/2013 21

#### AVL tree insert

Let x be the node where an imbalance occurs. Four cases to consider. The insertion is in the

- 1. left subtree of the left child of x.
- 2. right subtree of the left child of x.
- 3. left subtree of the right child of x.
- 4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.

Cases 2 & 3 are solved by a double rotation.

1/23/2013

## Insert: detect potential imbalance

- 1. Insert the new node as in a BST (a new leaf)
- For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
- So after recursive insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

#### Fact that makes it a bit easier:

1/23/2013

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced

23

- So at most one node needs to be rebalanced

Case #1 Example

Insert(6)

Insert(3) Insert(1)

1/23/2013 24

## Case #1: Example

Insert(6) Insert(3) Insert(1)

Third insertion violates balance property

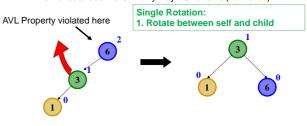
happens to be at the root

What is the only way to fix this?

/2013

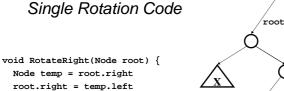
# Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
  - Move child of unbalanced node into parent position
  - Parent becomes the "other" child (always okay in a BST!)
  - Other subtrees move in only way BST allows (next slide)



1/23/2013

#### RotateRight brings up the right child



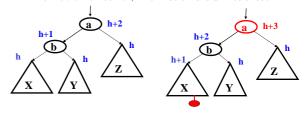
roid RotateRight(Node root) {
Node temp = root.right
root.right = temp.left
temp.left = root
root.height = max(root.right.height()) + 1
temp.height = max(temp.right.height()) + 1
root = temp

1/23/2013 27

## The example generalized

Notational note: Oval: a node in the tree Triangle: a subtree

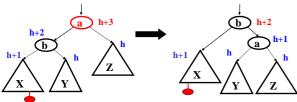
- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
- 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced



1/23/2013 28

# The general left-left case

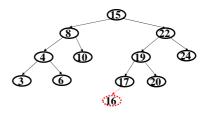
- Node imbalanced due to insertion *somewhere* in **left-left grandchild** increasing height
  - 1 of 4 possible imbalance causes (other three coming)
- So we rotate at a, using BST facts: X < b < Y < a < Z



· A single rotation restores balance at the node

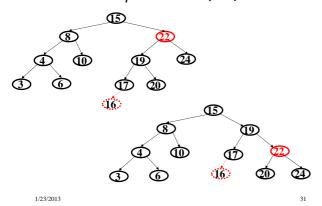
- To same height as before insertion (so ancestors now balanced)  $^{1/23/2013}$ 

Another example: insert(16)



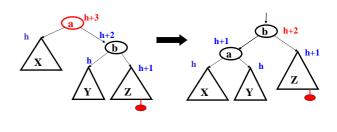
1/23/2013 30

## Another example: insert(16)



# The general right-right case

Mirror image to left-left case, so you rotate the other way
 Exact same concept, but need different code



# Case #3 Example

Insert(1)

Insert(6)

Insert(3)

1/23/2013

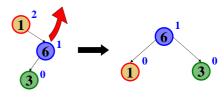
33

## Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- First wrong idea: single rotation like we did for left-left



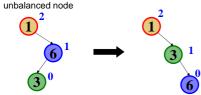
1/23/2013 34

## Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

Second wrong idea: single rotation on the child of the



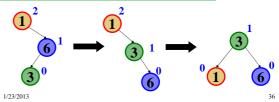
1/23/2013 35

## Sometimes two wrongs make a right @

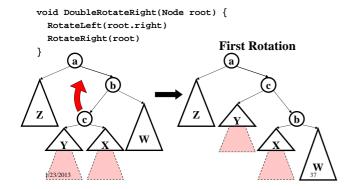
- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)

#### Double rotation:

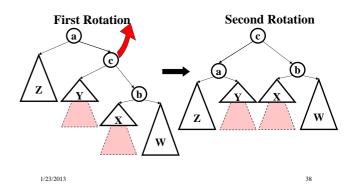
- 1. Rotate problematic child and grandchild
- 2. Then rotate between self and new child



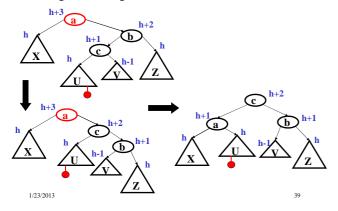
## Double Rotation Code



# **Double Rotation Completed**

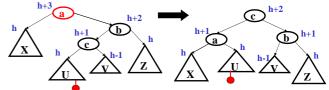


# The general right-left case



#### Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
  - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

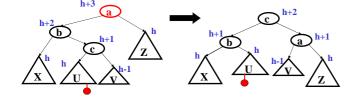


Easier to remember than you may think:

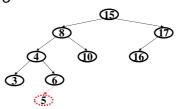
Move c to grandparent's position and then put a, b, X, U, V, and Z in the only legal positions for a BST  $\,$ 

# The last case: left-right

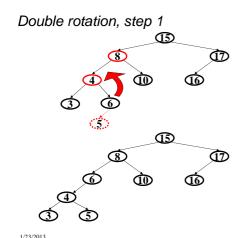
- Mirror image of right-left
  - Again, no new concepts, only new code to write



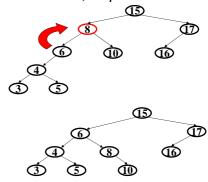
Insert 5



1/23/2013 41 1/23/2013 42



Double rotation, step 2



/23/2013 44

#### Insert, summarized

- · Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
  - node's left-left grandchild is too tall
  - node's left-right grandchild is too tall
  - node's right-left grandchild is too tall
  - node's right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
  - So all ancestors are now balanced

1/23/2013 45

#### Now efficiency

- Worst-case complexity of find: \_\_\_\_\_\_\_
  - Tree is balanced
- Worst-case complexity of insert: \_\_\_\_\_\_\_
  - Tree starts balanced
  - A rotation is O(1) and there's an  $O(\log n)$  path to root
  - (Same complexity even without one-rotation-is-enough fact)
  - Tree ends balanced
- Worst-case complexity of buildTree:
  \_\_\_\_\_\_\_
- Lazy deletion? \_\_\_\_\_\_

1/23/2013

46

#### Now efficiency

- Worst-case complexity of find: O(log n)
  - Tree is balanced
- Worst-case complexity of insert:  $O(\log n)$ 
  - Tree starts balanced
  - A rotation is O(1) and there's an O(log n) path to root
  - (Same complexity even without one-rotation-is-enough fact)
  - Tree ends balanced
- Worst-case complexity of buildTree: O(n log n)
- delete? (see 3 ed. Weiss) requires more rotations:  $O(\log n)$

Pros and Cons of AVL Trees

Arguments for AVL trees:

- All operations logarithmic worst-case because trees are always balanced
- Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- 1. Difficult to program & debug
- More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)

1/23/2013 47 1/23/2013 48

# More Examples...

Insert into an AVL tree: a b e c d

/23/2013

## **Student Activity**

Easy Insert

50

# **Single and Double Rotations:**

Inserting what integer values would cause the tree to need

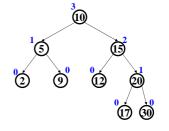
a: 1. single rotation?

2. double rotation?



3. no rotation?

 $Insert({\color{red}3})$ 



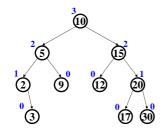
**Unbalanced?** 

1/23/2013 52

**Student Activity** 

Hard Insert

Insert(33)

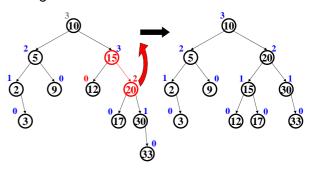


**Unbalanced?** 

How to fix?

1/23/2013 53

# Single Rotation



1/23/2013 54

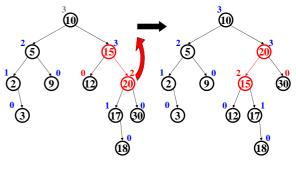
# Hard Insert Insert(18)

How to fix?

1/23/2013

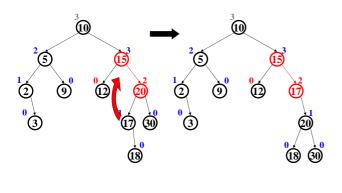
3 (10)

# Single Rotation (oops!)



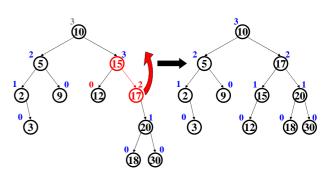
1/23/2013

# Double Rotation (Step #1)



1/23/2013 5

# Double Rotation (Step #2)



1/23/2013