

Announcements

- Project 1 - phase B due Tues Jan $22^{\text {th }}, 11$ pm via catalyst
- Homework 1 - due NOW!!
- Homework 2 - due Friday Jan $25^{\text {th }}$ at beginning of class
- No class on Monday Jan $21^{\text {th }}$

Lecture 6: Dictionaries; Binary Search Trees

Ruth Anderson
Winter 2013

Today

- Dictionaries
- Trees

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, ...
2. Queue: enqueue, dequeue, isEmpty,...
3. Priority queue: insert, deleteMin, ...

Next:
4. Dictionary (a.k.a. Map): associate keys with values

- probably the most common, way more than priority queue

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

- A key is present or not (no repeats)
- set of (key, value) pairs
- keys must be comparable

Operations:

- insert (key, val) :
- places (key,val) in map (If key already used, overwrites existing entry)
- find (key) :
- returns val associated with key

HyeIn
Kim

- delete (key)
...
rea
Ruth
Anderson
...
dcjones
dcjones
Daniel
Jones
...
- ... We will tend to emphasize the keys, but

1/18/2013
don't forget about the stored values!

A Modest Few Uses for Dictionaries

Any time you want to store information according to some key and be able to retrieve it efficiently - a dictionary is the ADT to use! - Lots of programs do that!

- Networks:
router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, ..
- Biology: genome maps
-

Simple implementations

For dictionary with n key/value pairs
Unsorted linked-lis insert
nd delete

- Unstad
$O(n)$
- Unsorted array $\quad O(1)^{*} \quad O(n) \quad O(n)$
- Sorted linked list $\quad O(n) \quad O(n) \quad O(n)$
- Sorted array $\quad O(n) \quad O(\log n) \quad O(n)$

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced
*Note: If we do not allow duplicates values to be inserted, we would need to do $\mathrm{O}(\mathrm{n})$ work to check for a key's existence before insertion
1/18/2013

Simple implementations

For dictionary with n key/value pairs
insert find delete

- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

1/18/2013

Lazy Deletion (e.g. in a sorted array)

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{5 0}$
\checkmark	\mathbf{x}	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{x}	\checkmark	\checkmark

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find $O(\log m)$ time where m is data-structure size ($m>=\mathrm{n}$)
- May complicate other operations

Why Trees?

Trees offer speed ups because of their branching factors

- Binary Search Trees are structured forms of binary search

Will spend the next several lectures looking at dictionaries with three different data structures

1. AVL trees

- Binary search trees with guaranteed balancing

2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables

- Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

Binary Search

find(4)

Why Trees?

Trees offer speed ups because of their branching factors

- Binary Search Trees are structured forms of binary search

Even a basic BST is fairly good

	Insert	Find	Delete
Worse-Case	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Average-Case	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$

1/18/2013

Binary Search Tree

Our goal is the performance of binary search in a tree representation

Binary Trees

- Binary tree is empty or
- a root (with data)
- a left subtree (maybe empty)
- a right subtree (maybe empty)
- Representation

- For a dictionary, data will include a key and a value

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count \# of edges)

For binary tree of height h :

- max \# of leaves
- max \# of nodes
- min \# of leaves:
- min \# of nodes:

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h :

- max \# of leaves: $\quad 2^{h}$
- max \# of nodes: $\quad 2^{(h+1)}-1$
- min \# of leaves: $\quad 1$
- min \# of nodes: $\quad \boldsymbol{h}+\boldsymbol{1}$

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid $O(n)$ height

Calculating height

What is the height of a tree with root root?
int treeHeight (Node root) \{

???

\}

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order. root, left subtree, right subtree
- In-order. left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

(an expression tree)

Calculating height

What is the height of a tree with root \mathbf{r} ?

```
int treeHeight(Node root) {
        if(root == null)
        return -1;
        return 1 + max(treeHeight(root.left),
                                    treeHeight(root.right));
    }
```

Running time for tree with n nodes: $O(n)$ - single pass over tree Note: non-recursive is painful - need your own stack of pending nodes; much easier to use recursion's call stack

1/18/2013

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- Pre-order. root, left subtree, right subtree

$$
\text { + * } 245
$$

- In-order: left subtree, root, right subtree

- Post-order. left subtree, right subtree, root 24 * 5 +
(an expression tree)

1/18/2013

Binary Search Tree

- Structural property ("binary")
- each node has ≤ 2 children
- result: keeps operations simple
- Order property
- all keys in left subtree smaller than node's key
- all keys in right subtree larger than node's key
- result: easy to find any given key

Are these BSTs?

Find in BST, Recursive

1/18/2013

Other "finding operations"

- Find minimum node
- Find maximum node
- Find predecessor of a non-leaf
- Find successor of a non-leaf
- Find predecessor of a leaf
- Find successor of a leaf

Are these BSTs?

(3)

26

Find in BST, Iterative

Data find(Key key, Node root) \{
while (root ! = null
\&\& root.key ! = key) \{
if(key < root.key)
root $=$ root.left;
else(key > root.key)
root = root.right;
\}
if(root $==$ null)
return null;
return root.data;
$\}^{r e}$

Insert in BST

insert (13)
insert (8)
insert (31)
(New) insertions happen only at leaves - easy!

1. Find
2. Create a new node

Deletion in BST

Why might deletion be harder than insertion?

Deletion - The Leaf Case
delete(17)

Deletion - The Two Child Case

delete (5)

What can we replace 5 with?

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree: findMax (node.left)
- These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

- Leaf or one child case - easy cases of delete!

Delete Using Successor

findMin(right sub tree) $\rightarrow \mathbf{7}$
delete(5)

1/18/2013

BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys $1,2,3,4,5,6,7,8,9$ into an empty BST
- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?
- Is inserting in the reverse order any better?

BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8,9 into an empty BST
- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?
- Is inserting in the reverse order any better?
(1)
$O\left(n^{2}\right)$
Not a happy place

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8,9 into an empty BST
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
- $5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime?
$O(n \log n)$, definitely better

Give up on BuildTree for BST

The median trick will guarantee a $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ build time, but it is not worth the effort.

Why?

- Subsequent inserts and deletes will eventually transform the carefully balanced tree into the dreaded list
- Then everything will have the $O(n)$ performance of a linked list

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
- Average height is $O(\log n)$ - see text for proof - Worst case height is $O(n)$
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

1. ensures depth is always $O(\log n)$	- strong enough!
2. is easy to maintain	- not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height
3. Left and right subtrees of the root have equal number of nodes

4. Left and right subtrees of the root have equal height
```
Too weak!
Double chain example:
```


Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

Too strong!

Only perfect trees (2n 1 nodes)
4. Left and right subtrees of every node have equal height

Too strong!
Only perfect trees ($2^{n}-1$ nodes)

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) $=$ height(node.left) - height(node.right)

AVL property: for every node $x,-1 \leq \operatorname{balance}(x) \leq 1$

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Easy (well, efficient) to maintain
- Using single and double rotations

1/18/2013

