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Announcements  

• Project 1 – phase A due next Wed Jan 16th 

• Homework 1 – due Friday Jan 18th at beginning of class 

 

• Info sheets? 

• Catalyst Survey 
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Today 

• How to compare two algorithms? 

• Analyzing code 

• Big-Oh 
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Comparing Two Algorithms… 
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Gauging performance 

• Uh, why not just run the program and time it 

– Too much variability, not reliable or portable: 

• Hardware: processor(s), memory, etc. 

• OS, Java version, libraries, drivers 

• Other programs running 

• Implementation dependent 

– Choice of input 

• Testing (inexhaustive) may miss worst-case input 

• Timing does not explain relative timing among inputs 

(what happens when n doubles in size) 

 

• Often want to evaluate an algorithm, not an implementation 

– Even before creating the implementation (“coding it up”) 
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Comparing algorithms 

When is one algorithm (not implementation) better than another? 

– Various possible answers (clarity, security, …) 

– But a big one is performance: for sufficiently large inputs, 

runs in less time (our focus) or less space 
 

Large inputs (n) because probably any algorithm is “plenty good” 

for small inputs (if n is 10, probably anything is fast enough) 
 

Answer will be independent of CPU speed, programming language, 

coding tricks, etc. 
 

Answer is general and rigorous, complementary to “coding it up 

and timing it on some test cases” 

– Can do analysis before coding! 
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Analyzing code (“worst case”) 

Basic operations  take “some amount of” constant time 

– Arithmetic (fixed-width) 

– Assignment 

– Access one Java field or array index 

– Etc. 

(This is an approximation of reality: a very useful “lie”.) 

 

Consecutive statements  Sum of time of each statement 

Conditionals   Time of condition plus time of  

        slower branch 

Loops    Num iterations * time for loop body 

Function Calls   Time of function’s body 

Recursion   Solve recurrence equation 
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Example 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   ??? 

} 
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Linear search 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 
Best case: 

 

Worst case: 
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Linear search 

Find an integer in a sorted array 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      

// returns whether k is in array 

boolean find(int[]arr, int k){ 

   for(int i=0; i < arr.length; ++i) 

      if(arr[i] == k) 

        return true; 

   return false; 

} 

Best case: 6ish steps = O(1) 

Worst case: 5ish*(arr.length)   

        = O(arr.length) 
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Analyzing Recursive Code 

• Computing run-times gets interesting with recursion 

• Say we want to perform some computation recursively on a list of 

size n 

– Conceptually, in each recursive call we: 

• Perform some amount of work, call it w(n) 

• Call the function recursively with a smaller portion of the list 

 

• So, if we do w(n) work per step, and reduce the problem size in 

the next recursive call by 1, we do total work: 

 T(n)=w(n)+T(n-1) 

• With some base case, like T(1)=5=O(1) 
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Example Recursive code: sum array 

Each time help is called, it does that O(1) amount of work, and 

then calls help again on a problem one less than previous 

problem size. 

Recurrence Relation: T(n) = O(1) + T(n-1) 

int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 

– Recurrence is  

 some constant 

amount of work 

O(1) done n 

times 
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Solving Recurrence Relations 
• Say we have the following recurrence relation: 

  T(n)=3+T(n-1) 

  T(1)=5   base case 

• Now we just need to solve it; that is, reduce it to a closed form. 

• Start by writing it out: 

 T(n)=3+T(n-1) 

        =3+3+T(n-2) 

        =3+3+3+T(n-3) 

        =3k+T(n-k) 

        =3+3+3+…+3+T(1)  =  3+3+3+…+3+5 

        =3k+5, where k is the # of times we expanded T() 

• We expanded it out n-1 times, so 

 T(n)=3k+T(n-k) 

        =3(n-1)+T(1) = 3(n-1)+5 

        =3n+2 = O(n) 

Or  When does n-k=1? 

Answer: when k=n-1 

1/11/2013 13 



Binary search 

Find an integer in a sorted array 

– Can also be done non-recursively but “doesn’t matter” here 

      

 

2 3 5 16 37 50 73 75 126 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: 

 

Worst case: 
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Binary search 

// requires array is sorted      
// returns whether k is in array 
boolean find(int[]arr, int k){ 
   return help(arr,k,0,arr.length); 
} 
boolean help(int[]arr, int k, int lo, int hi) { 
   int mid = (hi+lo)/2; 
   if(lo==hi)      return false; 
   if(arr[mid]==k) return true; 
   if(arr[mid]< k) return help(arr,k,mid+1,hi); 
   else            return help(arr,k,lo,mid); 
} 
    

Best case: 9ish steps = O(1) 

Worst case: T(n) = 10ish + T(n/2) where n is hi-lo 

• O(log n) where n is array.length 

• Solve recurrence equation to know that… 
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Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 

– T(n) = 10 + T(n/2) T(1) = 15 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

 

 

 

 

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case 
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Solving Recurrence Relations 

1. Determine the recurrence relation.  What is the base case? 

– T(n) = 10 + T(n/2) T(1) = 15 

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

– T(n)  = 10 + 10 + T(n/4) 

          = 10 + 10 + 10 + T(n/8) 

                 = … 

                 = 10k + T(n/(2k))    (where k is the number of expansions) 

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case 

– n/(2k) = 1 means n = 2k  means k = log2 n 

– So T(n) = 10 log2 n + 15  (get to base case and do it) 

– So T(n) is O(log n) 
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Ignoring constant factors 

• So binary search is O(log n) and linear is O(n)  

– But which is faster? 

– Depending on constant factors and size of n, in a particular 

case, linear search could be faster…. 

 

• Could depend on constant factors 

– How many assignments, additions, etc. for each n 

– And could depend on size of n 

 

• But there exists some n0 such that for all n > n0 binary search wins 

 

• Let’s play with a couple plots to get some intuition… 
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Example 

• Let’s try to “help” linear search 

– Run it on a computer 100x as fast (say 2010 model vs. 1990) 

– Use a new compiler/language that is 3x as fast 

– Be a clever programmer to eliminate half the work 

– So doing each iteration is 600x as fast as in binary search 

• Note: 600x still helpful for problems without logarithmic algorithms! 
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Another example: sum array 

Two “obviously” linear algorithms: T(n) = O(1) + T(n-1) 

int sum(int[] arr){ 
  int ans = 0; 
  for(int i=0; i<arr.length; ++i) 
     ans += arr[i];  
  return ans; 
} 

int sum(int[] arr){ 
  return help(arr,0); 
} 
int help(int[]arr,int i) { 
  if(i==arr.length)  
    return 0; 
  return arr[i] + help(arr,i+1); 
} 

Recursive: 

– Recurrence is  

 c + c  + … + c   

 for n times 

 

Iterative: 
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What about a binary version of sum? 

Recurrence is T(n) = O(1) + 2T(n/2) 

– 1 + 2 + 4 + 8 + …   for log n times 

– 2(log n) – 1 which is proportional to n (by definition of logarithm) 
 

Easier explanation: it adds each number once while doing little else 
 

“Obvious”: You can’t do better than O(n) – have to read whole array 

 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
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Parallelism teaser 

• But suppose we could do two recursive calls at the same time 

– Like having a friend do half the work for you! 

int sum(int[]arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[]arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    

 • If you have as many “friends of friends” as needed, the recurrence 

is now   T(n) = O(1) + 1T(n/2) 

– O(log n)  : same recurrence as for find 
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Really common recurrences 

Should know how to solve recurrences but also recognize some 

really common ones: 
 

 T(n) = O(1) + T(n-1)  linear 

 T(n) = O(1) + 2T(n/2)  linear 

 T(n) = O(1) + T(n/2)   logarithmic 

 T(n) = O(1) + 2T(n-1)  exponential 

 T(n) = O(n) + T(n-1)   quadratic  

 T(n) = O(n) + T(n/2)   linear 

 T(n) = O(n) + 2T(n/2)  O(n log n) 

 

Note big-Oh can also use more than one variable 

• Example: can sum all elements of an n-by-m matrix in O(nm) 
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Asymptotic notation 

About to show formal definition, which amounts to saying: 

1. Eliminate low-order terms 

2. Eliminate coefficients 

 

Examples: 

– 4n + 5 

– 0.5n log n + 2n + 7 

– n3 + 2n + 3n 

– n log (10n2 ) 
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Examples 
True or false? 

 

1. 4+3n is O(n) 

2. n+2logn is O(logn) 

3. logn+2 is O(1) 

4. n50 is O(1.1n) 

 

 

Notes: 

• Do NOT ignore constants that are not multipliers: 

– n3 is O(n2) : FALSE 

– 3n is O(2n) : FALSE 

• When in doubt, refer to the definition) 

 

True 

False 

False 

True 
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Big-Oh relates functions 

We use O on a function f(n) (for example n2) to mean the set of 

functions with asymptotic behavior less than or equal to f(n) 

 

So (3n2+17)  is in O(n2)  

– 3n2+17 and n2  have the same asymptotic behavior 

 

Confusingly, we also say/write: 

– (3n2+17)  is O(n2)  

– (3n2+17)  =  O(n2)  

 

But we would never say O(n2) =  (3n2+17) 
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Formally Big-Oh 

Definition:   g(n) is in O( f(n) ) iff there exist 

positive constants c and n0 such that  

 

 g(n)   c f(n)  for all n  n0 

 

To show g(n) is in O( f(n) ), pick a c large enough to “cover the 

constant factors” and n0 large enough to “cover the lower-order 

terms” 

• Example: Let g(n) = 3n2+17 and f(n) = n2 

  c = 5 and n0  = 10 is more than good enough 

 

This is “less than or equal to” 

– So 3n2+17 is also O(n5) and O(2n)  etc. 
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Using the definition of Big-Oh (Example 1) 

For g(n) = 4n & f(n) = n2, prove g(n) is in O(f(n)) 

– A valid proof is to find valid c & n0  

– When n=4, g(n) =16 & f(n) =16; this is the crossing over point 

– So we can choose n0 = 4, and c  = 1 

 

– Note: There are many possible choices:  

ex: n0 = 78, and c = 42 works fine 

 

The Definition: g(n) is in O(f(n) ) 

iff there exist positive constants c 

and n0 such that 

 g(n)    c f(n) for all n  n0. 
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Using the definition of Big-Oh (Example 2) 

For g(n) = n4 & f(n) = 2n, prove g(n) is in O(f(n)) 

– A valid proof is to find valid c & n0  

– One possible answer: n0 = 20, and c  = 1 

 

The Definition: g(n) is in O(f(n) ) 

iff there exist positive constants c 

and n0 such that 

 g(n)    c f(n) for all n  n0. 
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What’s with the c? 

• To capture this notion of similar asymptotic behavior, we allow a 

constant multiplier (called c) 

• Consider: 

 g(n) = 7n+5 

 f(n) = n 

• These have the same asymptotic behavior (linear),  

so g(n) is in O(f(n)) even though g(n) is always larger 

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0 

• The ‘c’ in the definition allows for that: 

  g(n)   c f(n)  for all n  n0 

• To prove g(n) is in O(f(n)), have c = 12, n0 = 1 

1/11/2013 30 



What you can drop 

• Eliminate coefficients because we don’t have units anyway 

– 3n2  versus 5n2  doesn’t mean anything when we have not 

specified the cost of constant-time operations (can re-scale) 

 

• Eliminate low-order terms because they have vanishingly small 

impact as n grows 

 

• Do NOT ignore constants that are not multipliers 

– n3 is not O(n2) 

– 3n is not O(2n) 

 

(This all follows from the formal definition) 
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Big Oh: Common Categories 

From fastest to slowest 

O(1)  constant (same as O(k) for constant k) 

O(log n) logarithmic 

O(n)  linear 

O(n log n)         “n log n” 

O(n2)  quadratic 

O(n3)  cubic 

O(nk)  polynomial (where is k is an constant) 

O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it 

means “grows at rate proportional to kn for some k>1” 

– A savings account accrues interest exponentially (k=1.01?) 
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More Asymptotic Notation 

• Upper bound: O( f(n) ) is the set of all functions asymptotically 

less than or equal to f(n) 

– g(n) is in O( f(n) ) if there exist  constants c and n0 such that  

  g(n)   c f(n) for all n  n0 
 

• Lower bound: ( f(n) ) is the set of all functions asymptotically 

greater than or equal to f(n) 

– g(n) is in ( f(n) ) if there exist  constants c and n0 such that  

  g(n)  c f(n) for all n  n0 
 

• Tight bound: ( f(n) ) is the set of all functions asymptotically 

equal to f(n) 

– Intersection of O( f(n) ) and ( f(n) )  (use different c values) 
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Regarding use of terms 

A common error is to say O( f(n) ) when you mean ( f(n) ) 

– People often say O() to mean a tight bound 

– Say we have f(n)=n; we could say f(n) is in O(n), which is 

true, but only conveys the upper-bound 

– Since f(n)=n is also O(n5), it’s tempting to say “this algorithm 

is exactly O(n)” 

– Somewhat incomplete; instead say it is (n) 

– That means that it is not, for example O(log n)  

Less common notation: 

– “little-oh”: like “big-Oh” but strictly less than 

• Example: sum is o(n2) but not o(n) 

– “little-omega”: like “big-Omega” but strictly greater than 

• Example: sum is (log n) but not (n) 
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What we are analyzing 

• The most common thing to do is give an O or  bound to the 

worst-case running time of an algorithm 

 

• Example: True statements about binary-search algorithm  

– Common: (log n) running-time in the worst-case 

– Less common: (1) in the best-case (item is in the middle) 

– Less common: Algorithm is (log log n) in the worst-case 

(it is not really, really, really fast asymptotically) 

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case 

• No algorithm can do better (without parallelism) 

• A problem cannot be O(f(n)) since you can always find a 

slower algorithm, but can mean there exists an algorithm 
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Other things to analyze 

• Space instead of time 

– Remember we can often use space to gain time 

 

• Average case 

– Sometimes only if you assume something about the 

distribution of inputs 

• See CSE312 and STAT391 

– Sometimes uses randomization in the algorithm 

• Will see an example with sorting; also see CSE312 

– Sometimes an amortized guarantee 

• Will discuss in a later lecture 
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Summary 

Analysis can be about: 

• The problem or the algorithm (usually algorithm) 

• Time or space (usually time) 

– Or power or dollars or … 

• Best-, worst-, or average-case (usually worst) 

• Upper-, lower-, or tight-bound  (usually upper or tight) 

1/11/2013 37 



Big-Oh Caveats 

• Asymptotic complexity (Big-Oh) focuses on behavior for large n 

and is independent of any computer / coding trick 

– But you can “abuse” it to be misled about trade-offs 

– Example: n1/10 vs. log n 

• Asymptotically n1/10 grows more quickly 

• But the “cross-over” point is around 5 * 1017 

• So if you have input size less than 258, prefer n1/10 

• Comparing O() for small n values can be misleading 

– Quicksort: O(nlogn) (expected) 

– Insertion Sort: O(n2) (expected) 

– Yet in reality Insertion Sort is faster for small n’s 

– We’ll learn about these sorts later 
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Addendum: Timing vs. Big-Oh? 

• At the core of CS is a backbone of theory & mathematics 

– Examine the algorithm itself, mathematically, not the 
implementation 

– Reason about performance as a function of n 

– Be able to mathematically prove things about performance 

• Yet, timing has its place 

– In the real world, we do want to know whether 
implementation A runs faster than implementation B on data 
set C 

– Ex: Benchmarking graphics cards 

– We will do some timing in project 3 (and in 2, a bit) 

• Evaluating an algorithm?  Use asymptotic analysis 

• Evaluating an implementation of hardware/software?  Timing 
can be useful 
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