
CSE332: Data Abstractions

Lecture 3: Asymptotic Analysis

Ruth Anderson

Winter 2013

Announcements

• Project 1 – phase A due next Wed Jan 16th

• Homework 1 – due Friday Jan 18th at beginning of class

• Info sheets?

• Catalyst Survey

1/11/2013 2

Today

• How to compare two algorithms?

• Analyzing code

• Big-Oh

1/11/2013 3

Comparing Two Algorithms…

1/11/2013 4

Gauging performance

• Uh, why not just run the program and time it

– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.

• OS, Java version, libraries, drivers

• Other programs running

• Implementation dependent

– Choice of input

• Testing (inexhaustive) may miss worst-case input

• Timing does not explain relative timing among inputs

(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

1/11/2013 5

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs,

runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good”

for small inputs (if n is 10, probably anything is fast enough)

Answer will be independent of CPU speed, programming language,

coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up

and timing it on some test cases”

– Can do analysis before coding!

1/11/2013 6

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time

– Arithmetic (fixed-width)

– Assignment

– Access one Java field or array index

– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of time of each statement

Conditionals Time of condition plus time of

 slower branch

Loops Num iterations * time for loop body

Function Calls Time of function’s body

Recursion Solve recurrence equation

1/11/2013 7

Example

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 ???

}

1/11/2013 8

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 for(int i=0; i < arr.length; ++i)

 if(arr[i] == k)

 return true;

 return false;

}
Best case:

Worst case:

 1/11/2013 9

Linear search

Find an integer in a sorted array

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 for(int i=0; i < arr.length; ++i)

 if(arr[i] == k)

 return true;

 return false;

}

Best case: 6ish steps = O(1)

Worst case: 5ish*(arr.length)

 = O(arr.length)

1/11/2013 10

Analyzing Recursive Code

• Computing run-times gets interesting with recursion

• Say we want to perform some computation recursively on a list of

size n

– Conceptually, in each recursive call we:

• Perform some amount of work, call it w(n)

• Call the function recursively with a smaller portion of the list

• So, if we do w(n) work per step, and reduce the problem size in

the next recursive call by 1, we do total work:

 T(n)=w(n)+T(n-1)

• With some base case, like T(1)=5=O(1)

1/11/2013 11

Example Recursive code: sum array

Each time help is called, it does that O(1) amount of work, and

then calls help again on a problem one less than previous

problem size.

Recurrence Relation: T(n) = O(1) + T(n-1)

int sum(int[] arr){
 return help(arr,0);
}
int help(int[]arr,int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

 some constant

amount of work

O(1) done n

times

1/11/2013 12

Solving Recurrence Relations
• Say we have the following recurrence relation:

 T(n)=3+T(n-1)

 T(1)=5 base case

• Now we just need to solve it; that is, reduce it to a closed form.

• Start by writing it out:

 T(n)=3+T(n-1)

 =3+3+T(n-2)

 =3+3+3+T(n-3)

 =3k+T(n-k)

 =3+3+3+…+3+T(1) = 3+3+3+…+3+5

 =3k+5, where k is the # of times we expanded T()

• We expanded it out n-1 times, so

 T(n)=3k+T(n-k)

 =3(n-1)+T(1) = 3(n-1)+5

 =3n+2 = O(n)

Or When does n-k=1?

Answer: when k=n-1

1/11/2013 13

Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; //i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case:

Worst case:

1/11/2013 14

Binary search

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case: 9ish steps = O(1)

Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

1/11/2013 15

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 15

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

1/11/2013 16

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 15

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = 10 + 10 + T(n/4)

 = 10 + 10 + 10 + T(n/8)

 = …

 = 10k + T(n/(2k)) (where k is the number of expansions)

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n

– So T(n) = 10 log2 n + 15 (get to base case and do it)

– So T(n) is O(log n)

1/11/2013 17

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)

– But which is faster?

– Depending on constant factors and size of n, in a particular

case, linear search could be faster….

• Could depend on constant factors

– How many assignments, additions, etc. for each n

– And could depend on size of n

• But there exists some n0 such that for all n > n0 binary search wins

• Let’s play with a couple plots to get some intuition…

1/11/2013 18

Example

• Let’s try to “help” linear search

– Run it on a computer 100x as fast (say 2010 model vs. 1990)

– Use a new compiler/language that is 3x as fast

– Be a clever programmer to eliminate half the work

– So doing each iteration is 600x as fast as in binary search

• Note: 600x still helpful for problems without logarithmic algorithms!

1/11/2013 19

Another example: sum array

Two “obviously” linear algorithms: T(n) = O(1) + T(n-1)

int sum(int[] arr){
 int ans = 0;
 for(int i=0; i<arr.length; ++i)
 ans += arr[i];
 return ans;
}

int sum(int[] arr){
 return help(arr,0);
}
int help(int[]arr,int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

 c + c + … + c

 for n times

Iterative:

1/11/2013 20

What about a binary version of sum?

Recurrence is T(n) = O(1) + 2T(n/2)

– 1 + 2 + 4 + 8 + … for log n times

– 2(log n) – 1 which is proportional to n (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than O(n) – have to read whole array

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

1/11/2013 21

Parallelism teaser

• But suppose we could do two recursive calls at the same time

– Like having a friend do half the work for you!

int sum(int[]arr){
 return help(arr,0,arr.length);
}
int help(int[]arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

 • If you have as many “friends of friends” as needed, the recurrence

is now T(n) = O(1) + 1T(n/2)

– O(log n) : same recurrence as for find

1/11/2013 22

Really common recurrences

Should know how to solve recurrences but also recognize some

really common ones:

 T(n) = O(1) + T(n-1) linear

 T(n) = O(1) + 2T(n/2) linear

 T(n) = O(1) + T(n/2) logarithmic

 T(n) = O(1) + 2T(n-1) exponential

 T(n) = O(n) + T(n-1) quadratic

 T(n) = O(n) + T(n/2) linear

 T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an n-by-m matrix in O(nm)

1/11/2013 23

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms

2. Eliminate coefficients

Examples:

– 4n + 5

– 0.5n log n + 2n + 7

– n3 + 2n + 3n

– n log (10n2)

1/11/2013 24

Examples
True or false?

1. 4+3n is O(n)

2. n+2logn is O(logn)

3. logn+2 is O(1)

4. n50 is O(1.1n)

Notes:

• Do NOT ignore constants that are not multipliers:

– n3 is O(n2) : FALSE

– 3n is O(2n) : FALSE

• When in doubt, refer to the definition)

True

False

False

True

1/11/2013 25

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of

functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

– (3n2+17) is O(n2)

– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

1/11/2013 26

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist

positive constants c and n0 such that

 g(n) c f(n) for all n n0

To show g(n) is in O(f(n)), pick a c large enough to “cover the

constant factors” and n0 large enough to “cover the lower-order

terms”

• Example: Let g(n) = 3n2+17 and f(n) = n2

 c = 5 and n0 = 10 is more than good enough

This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n) etc.

1/11/2013 27

Using the definition of Big-Oh (Example 1)

For g(n) = 4n & f(n) = n2, prove g(n) is in O(f(n))

– A valid proof is to find valid c & n0

– When n=4, g(n) =16 & f(n) =16; this is the crossing over point

– So we can choose n0 = 4, and c = 1

– Note: There are many possible choices:

ex: n0 = 78, and c = 42 works fine

The Definition: g(n) is in O(f(n))

iff there exist positive constants c

and n0 such that

 g(n) c f(n) for all n n0.

1/11/2013 28

Using the definition of Big-Oh (Example 2)

For g(n) = n4 & f(n) = 2n, prove g(n) is in O(f(n))

– A valid proof is to find valid c & n0

– One possible answer: n0 = 20, and c = 1

The Definition: g(n) is in O(f(n))

iff there exist positive constants c

and n0 such that

 g(n) c f(n) for all n n0.

1/11/2013 29

What’s with the c?

• To capture this notion of similar asymptotic behavior, we allow a

constant multiplier (called c)

• Consider:

 g(n) = 7n+5

 f(n) = n

• These have the same asymptotic behavior (linear),

so g(n) is in O(f(n)) even though g(n) is always larger

• There is no positive n0 such that g(n) ≤ f(n) for all n ≥ n0

• The ‘c’ in the definition allows for that:

 g(n) c f(n) for all n n0

• To prove g(n) is in O(f(n)), have c = 12, n0 = 1

1/11/2013 30

What you can drop

• Eliminate coefficients because we don’t have units anyway

– 3n2 versus 5n2 doesn’t mean anything when we have not

specified the cost of constant-time operations (can re-scale)

• Eliminate low-order terms because they have vanishingly small

impact as n grows

• Do NOT ignore constants that are not multipliers

– n3 is not O(n2)

– 3n is not O(2n)

(This all follows from the formal definition)

1/11/2013 31

Big Oh: Common Categories

From fastest to slowest

O(1) constant (same as O(k) for constant k)

O(log n) logarithmic

O(n) linear

O(n log n) “n log n”

O(n2) quadratic

O(n3) cubic

O(nk) polynomial (where is k is an constant)

O(kn) exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it

means “grows at rate proportional to kn for some k>1”

– A savings account accrues interest exponentially (k=1.01?)

1/11/2013 32

More Asymptotic Notation

• Upper bound: O(f(n)) is the set of all functions asymptotically

less than or equal to f(n)

– g(n) is in O(f(n)) if there exist constants c and n0 such that

 g(n) c f(n) for all n n0

• Lower bound: (f(n)) is the set of all functions asymptotically

greater than or equal to f(n)

– g(n) is in (f(n)) if there exist constants c and n0 such that

 g(n) c f(n) for all n n0

• Tight bound: (f(n)) is the set of all functions asymptotically

equal to f(n)

– Intersection of O(f(n)) and (f(n)) (use different c values)

1/11/2013 33

Regarding use of terms

A common error is to say O(f(n)) when you mean (f(n))

– People often say O() to mean a tight bound

– Say we have f(n)=n; we could say f(n) is in O(n), which is

true, but only conveys the upper-bound

– Since f(n)=n is also O(n5), it’s tempting to say “this algorithm

is exactly O(n)”

– Somewhat incomplete; instead say it is (n)

– That means that it is not, for example O(log n)

Less common notation:

– “little-oh”: like “big-Oh” but strictly less than

• Example: sum is o(n2) but not o(n)

– “little-omega”: like “big-Omega” but strictly greater than

• Example: sum is (log n) but not (n)

1/11/2013 34

What we are analyzing

• The most common thing to do is give an O or bound to the

worst-case running time of an algorithm

• Example: True statements about binary-search algorithm

– Common: (log n) running-time in the worst-case

– Less common: (1) in the best-case (item is in the middle)

– Less common: Algorithm is (log log n) in the worst-case

(it is not really, really, really fast asymptotically)

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case

• No algorithm can do better (without parallelism)

• A problem cannot be O(f(n)) since you can always find a

slower algorithm, but can mean there exists an algorithm

1/11/2013 35

Other things to analyze

• Space instead of time

– Remember we can often use space to gain time

• Average case

– Sometimes only if you assume something about the

distribution of inputs

• See CSE312 and STAT391

– Sometimes uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

– Sometimes an amortized guarantee

• Will discuss in a later lecture

1/11/2013 36

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

1/11/2013 37

Big-Oh Caveats

• Asymptotic complexity (Big-Oh) focuses on behavior for large n

and is independent of any computer / coding trick

– But you can “abuse” it to be misled about trade-offs

– Example: n1/10 vs. log n

• Asymptotically n1/10 grows more quickly

• But the “cross-over” point is around 5 * 1017

• So if you have input size less than 258, prefer n1/10

• Comparing O() for small n values can be misleading

– Quicksort: O(nlogn) (expected)

– Insertion Sort: O(n2) (expected)

– Yet in reality Insertion Sort is faster for small n’s

– We’ll learn about these sorts later

1/11/2013 38

Addendum: Timing vs. Big-Oh?

• At the core of CS is a backbone of theory & mathematics

– Examine the algorithm itself, mathematically, not the
implementation

– Reason about performance as a function of n

– Be able to mathematically prove things about performance

• Yet, timing has its place

– In the real world, we do want to know whether
implementation A runs faster than implementation B on data
set C

– Ex: Benchmarking graphics cards

– We will do some timing in project 3 (and in 2, a bit)

• Evaluating an algorithm? Use asymptotic analysis

• Evaluating an implementation of hardware/software? Timing
can be useful

1/11/2013 39

