

3

5

CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Ruth Anderson Winter 2013

Announcements

- Project 1 posted
 Section materials on Eclipse will be very useful if you have never used it
 - (Could also start in a different environment if necessary)
 - Section materials on generics will be very useful for Phase B

2

4

- Homework 1 coming soon (due next Friday)
- Bring info sheet to section tomorrow or lecture on Friday
- Fill out catalyst survey by Thursday evening

Today

• Finish discussing queues

- Review math essential to algorithm analysis
- Proof by induction
- Bit patterns
- Powers of 2
- Exponents and logarithms
- · Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)

1/09/2013

P(n) = "the sum of the first *n* powers of 2 (starting at 2^o) is 2ⁿ-1 "

Inductive Proof Example

Theorem: P(n) holds for all $n \ge 1$

Proof: By induction on *n*

• Base case, *n*=1: Sum of first power of 2 is 2⁰, which equals 1. And for n=1, 2ⁿ-1 equals 1.

Inductive case:

- Inductive hypothesis: Assume the sum of the first k powers of 2 is 2^k-1
- Show, given the hypothesis, that the sum of the first (k+1) powers of 2 is 2^{k+1}-1

From our inductive hypothesis we know: $1+2+4+\ldots+2^{k-1}=2^k-1$

Add the next power of 2 to both sides... $1+2+4+...+2^{k-1}+2^{k} = 2^{k}-1+2^{k}$

```
We have what we want on the left; massage the right a bit 1+2+4+\ldots+2^{k-1}+2^k=2(2^k)-1=2^{k+1}-1
```

1/09/2013

Mathematical induction

Suppose P(n) is some predicate (involving integer n) - Example: $n \ge n/2 + 1$ (for all $n \ge 2$)

To prove P(n) for all integers $n \ge c$, it suffices to prove

1. P(c) – called the "basis" or "base case"

2. If P(k) then P(k+1) – called the "induction step" or "inductive case"

We will use induction:

To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is (Our "n" will be the data structure or input size.)

1/09/2013

1/09/2013

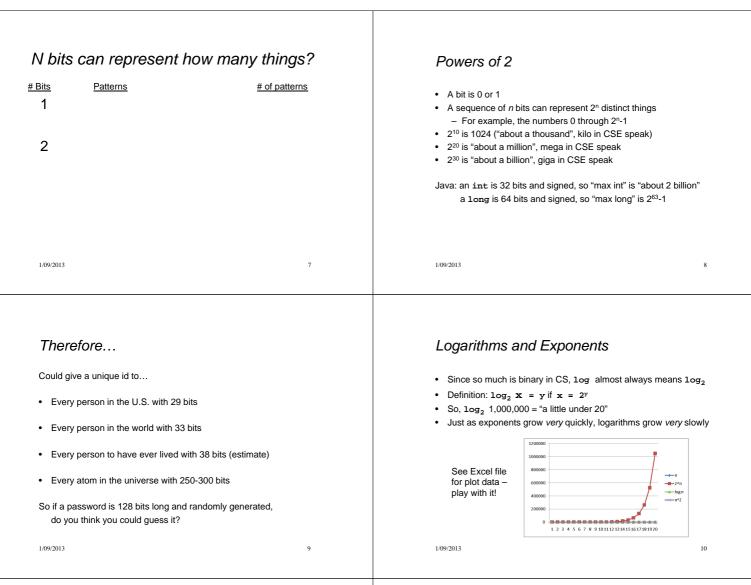
Note for homework

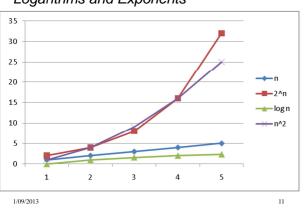
Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

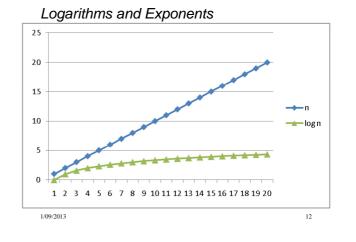
- What you're trying to prove
- The base case
- The inductive case
- The inductive hypothesis
 - In many inductive proofs, you'll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above

1/09/2013

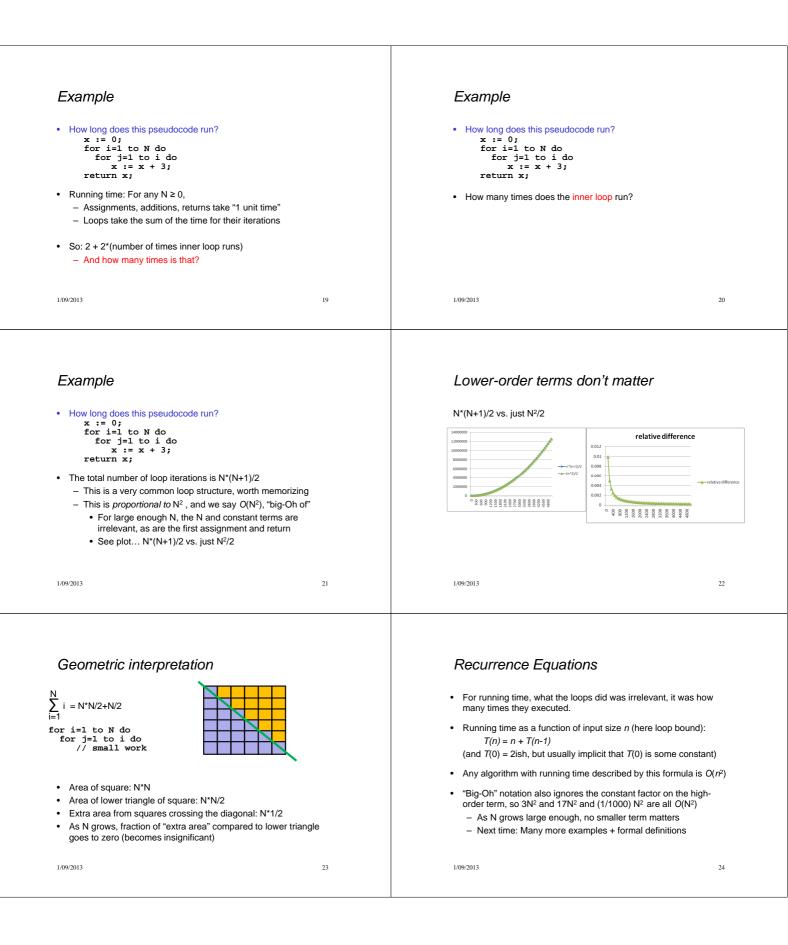




Logarithms and Exponents







Big-O: Common Names

O(1)	constant (same as $O(k)$ for constant k)
0(log <i>n</i>)	logarithmic
O(n)	linear
O(n log <i>n</i>)	"n log <i>n</i> "
O(n ²)	quadratic
O(n ³)	cubic
O(<i>n</i> ^k)	polynomial (where is <i>k</i> is an constant)
<i>O</i> (<i>k</i> ⁿ)	exponential (where <i>k</i> is any constant > 1)

"exponential" does not mean "grows really fast", it means "grows at rate proportional to *k*ⁿ for some *k*>1"

1/09/2013

25