
CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Ruth Anderson
Winter 2013

Announcements

• Project 1 posted
– Section materials on Eclipse will be very useful if you have

never used it
– (Could also start in a different environment if necessary)
– Section materials on generics will be very useful for Phase B

• Homework 1 coming soon (due next Friday)

• Bring info sheet to section tomorrow or lecture on Friday
• Fill out catalyst survey by Thursday evening

1/09/2013 2

Today

• Finish discussing queues
• Review math essential to algorithm analysis

– Proof by induction
– Bit patterns
– Powers of 2
– Exponents and logarithms

• Begin analyzing algorithms
– Using asymptotic analysis (continue next time)

1/09/2013 3

Mathematical induction

Suppose P(n) is some predicate (involving integer n)

– Example: n ≥ n/2 + 1 (for all n ≥ 2)

To prove P(n) for all integers n ≥ c, it suffices to prove
1. P(c) – called the “basis” or “base case”
2. If P(k) then P(k+1) – called the “induction step” or “inductive case”

We will use induction:
To show an algorithm is correct or has a certain running time
no matter how big a data structure or input value is
(Our “n” will be the data structure or input size.)

1/09/2013 4

Inductive Proof Example

5

Theorem: P(n) holds for all n ≥ 1
Proof: By induction on n
• Base case, n=1: Sum of first power of 2 is 20, which equals 1.

And for n=1, 2n-1 equals 1.
• Inductive case:

– Inductive hypothesis: Assume the sum of the first k powers
of 2 is 2k-1

– Show, given the hypothesis, that the sum of the first (k+1)
powers of 2 is 2k+1-1

From our inductive hypothesis we know:

Add the next power of 2 to both sides…

We have what we want on the left; massage the right a bit

122...421 1 −=++++ − kk

kkkk 21222...421 1 +−=+++++ −

121)2(222...421 11 −=−=+++++ +− kkkk

P(n) = “ the sum of the first n powers of 2 (starting at 2 0) is 2 n-1 ”

1/09/2013

Note for homework

6

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:
• What you’re trying to prove
• The base case
• The inductive case
• The inductive hypothesis

– In many inductive proofs, you’ll prove the inductive case by
just starting with your inductive hypothesis, and playing with
it a bit, as shown above

1/09/2013

1/09/2013 7

N bits can represent how many things?

Bits Patterns # of patterns

1

2

Powers of 2

• A bit is 0 or 1
• A sequence of n bits can represent 2n distinct things

– For example, the numbers 0 through 2n-1
• 210 is 1024 (“about a thousand”, kilo in CSE speak)
• 220 is “about a million”, mega in CSE speak
• 230 is “about a billion”, giga in CSE speak

Java: an int is 32 bits and signed, so “max int” is “about 2 billion”
a long is 64 bits and signed, so “max long” is 263-1

1/09/2013 8

Therefore…

Could give a unique id to…

• Every person in the U.S. with 29 bits

• Every person in the world with 33 bits

• Every person to have ever lived with 38 bits (estimate)

• Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated,
do you think you could guess it?

1/09/2013 9

Logarithms and Exponents

• Since so much is binary in CS, log almost always means log 2

• Definition: log 2 x = y if x = 2 y

• So, log 2 1,000,000 = “a little under 20”

• Just as exponents grow very quickly, logarithms grow very slowly

1/09/2013 10

See Excel file
for plot data –
play with it!

Logarithms and Exponents

1/09/2013 11

Logarithms and Exponents

1/09/2013 12

Logarithms and Exponents

1/09/2013 13

Properties of logarithms

14

• log(A*B) = log A + log B

– So log(N k)= k log N

• log(A/B) = log A – log B

• X =

• log(log x) is written log log x

– Grows as slowly as 22 grows fast
– Ex:

• (log x)(log x) is written log 2x

– It is greater than log x for all x > 2

y

532log2loglog~4loglog 2
32

2222 ==billion

x2log2

1/09/2013

Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”
– And we are about to stop worrying about constant factors!
– In particular, log 2 x = 3.22 log 10 x

– In general, we can convert log bases via a constant
multiplier

– Say, to convert from base A to base B:
log B x = (log A x) / (log A B)

1/09/2013 15

Algorithm Analysis

As the “size” of an algorithm’s input grows
(integer, length of array, size of queue, etc.):

– How much longer does the algorithm take (time)
– How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care
about “which curve we are like”

Separate issue: Algorithm correctness – does it produce the right
answer for all inputs
– Usually more important, naturally

1/09/2013 16

Example

• What does this pseudocode return?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;

• Correctness: For any N ≥ 0, it returns…

1/09/2013 17

Example

• What does this pseudocode return?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;

• Correctness: For any N ≥ 0, it returns 3N(N+1)/2
• Proof: By induction on n

– P(n) = after outer for-loop executes n times, x holds
3n(n+1)/2

– Base: n=0, returns 0
– Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
= (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

1/09/2013 18

Example

• How long does this pseudocode run?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;

• Running time: For any N ≥ 0,
– Assignments, additions, returns take “1 unit time”
– Loops take the sum of the time for their iterations

• So: 2 + 2*(number of times inner loop runs)
– And how many times is that?

1/09/2013 19

Example

• How long does this pseudocode run?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;

• How many times does the inner loop run?

1/09/2013 20

Example

• How long does this pseudocode run?
x := 0;
for i=1 to N do

for j=1 to i do
x := x + 3;

return x;

• The total number of loop iterations is N*(N+1)/2
– This is a very common loop structure, worth memorizing
– This is proportional to N2 , and we say O(N2), “big-Oh of”

• For large enough N, the N and constant terms are
irrelevant, as are the first assignment and return

• See plot… N*(N+1)/2 vs. just N2/2

1/09/2013 21

Lower-order terms don’t matter

N*(N+1)/2 vs. just N2/2

1/09/2013 22

Geometric interpretation

∑ i = N*N/2+N/2

for i=1 to N do
for j=1 to i do

// small work

N

i=1

• Area of square: N*N
• Area of lower triangle of square: N*N/2
• Extra area from squares crossing the diagonal: N*1/2
• As N grows, fraction of “extra area” compared to lower triangle

goes to zero (becomes insignificant)

1/09/2013 23

Recurrence Equations

• For running time, what the loops did was irrelevant, it was how
many times they executed.

• Running time as a function of input size n (here loop bound):
T(n) = n + T(n-1)

(and T(0) = 2ish, but usually implicit that T(0) is some constant)

• Any algorithm with running time described by this formula is O(n2)

• “Big-Oh” notation also ignores the constant factor on the high-
order term, so 3N2 and 17N2 and (1/1000) N2 are all O(N2)
– As N grows large enough, no smaller term matters
– Next time: Many more examples + formal definitions

1/09/2013 24

Big-O: Common Names

O(1) constant (same as O(k) for constant k)
O(log n) logarithmic

O(n) linear
O(n log n) “n log n”

O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is an constant)
O(kn) exponential (where k is any constant > 1)

“exponential” does not mean “grows really fast”, it means “grows at
rate proportional to kn for some k>1”

1/09/2013 25

