
1

CSE 332: Data Abstractions

Ruth Anderson
Winter Quarter 2013

Lecture 1

Welcome!

We have 10 weeks to learn fundamental
data structures and algorithms for
organizing and processing information
› “Classic” data structures / algorithms and

how to analyze rigorously their efficiency
and when to use them

› Queues, dictionaries, graphs, sorting, etc.

› Parallelism and concurrency (!)

1/07/13 2

3

Today’s Outline
• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

1/07/13 4

CSE 332 Course Staff!!
Instructor:

Ruth Anderson

Teaching Assistants:
• Daniel Jones
• Hye In Kim
• Jacob Gile
• David Swanson

1/07/13

Me (Ruth Anderson)

• Grad Student at UW in Programming Languages,
Compilers, Parallel Computing

• Taught Computer Science at the University of
Virginia for 5 years

• Grad Student at UW: PhD in Educational
Technology, Pen Computing

• Current Research: Computing and the Developing
World

• Recently Taught: majors and non-majors data
structures, architecture, compilers, programming
languages, cse143, Designing Technology
for Resource-Constrained Environments

1/07/13 6

Today’s Outline
• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

1/07/13

2

7

Course Information

• Instructor: Ruth Anderson, CSE 360
Office Hours: M 3:30-4:30pm,

Tu 11-11:50am, and by appointment,
(rea@cs.washington.edu)

• Text: Data Structures & Algorithm Analysis in
Java, (Mark Allen Weiss), 3rd edition, 2012

• Course Web page:
http://www.cs.washington.edu/332

1/07/13

Communication
• Course email list: cse332a_wi13@u

› Students and staff already subscribed
› You must get announcements sent there

› Fairly low traffic

• Course staff: cse332-staff@cs plus individual
emails

• Discussion board
› For appropriate discussions; staff will monitor
› Optional, won’t use for important announcements

• Anonymous feedback link
› For good and bad: if you don’t tell me, I don’t know

1/07/13 8

Course meetings
• Lecture (Ruth)

› Materials posted (sometimes afterwards), but take notes
› Ask questions, focus on key ideas (rarely coding details)

• Section (Hye In and Daniel)
› Often focus on software (Java features, tools, project issues)
› Reinforce key issues from lecture

› Occasionally introduce new material
› Answer homework questions, etc.
› An important part of the course (not optional)

• Office hours
› Use them: please visit me
› Ideally not just for homework questions (but that’s great too)

1/07/13 9

Course materials
• All lecture and section materials will be posted

› But they are visual aids, not always a complete description!
› If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java
› Good read, but only responsible for lecture/section/hw topics
› Will assign homework problems from it
› 3rd edition improves on 2nd, but we’ll support the 2nd

• Core Java book: A good Java reference (there may be others)
› Don’t struggle Googling for features you don’t understand
› Same book recommended for CSE331

• Parallelism / concurrency units in separate free resources
designed for 332

1/07/13 10

11

Course Work

• 8 written/typed homeworks (25%)
› Due at beginning of class each Friday (not this week)
› No late homeworks accepted

• 3 programming projects (with phases) (25%)
› First phase of first project due next week

› Use Java and Eclipse (see this week’s section)
› One 24-hour late-day for the quarter
› Projects 2 and 3 will allow partners

• Midterm - (20%)
• Final Exam - Tuesday March 19 (25%)

1/07/13

Collaboration & Academic Integrity
• Read the course policy very carefully

› Explains quite clearly how you can and cannot get/provide help
on homework and projects

› Gilligan’s Island rule applies.

• Always proactively explain any unconventional action on
your part
› When it happens, (not when asked)

• I offer great trust but with little sympathy for violations
• Honest work is the most important feature of a university

1/07/13 12

3

Unsolicited advice
• Get to class on time!

• Learn this stuff
› You need it for so many later classes/jobs anyway
› Falling behind only makes more work for you

• Have fun
› So much easier to be motivated and learn

1/07/13 13 14

Homework for Today!!

0) Review Java & install Eclipse
1) Project #1: (released by Wednesday) bring

questions to section on Thursday
2) Preliminary Survey: fill out by evening of

Thurs January 10th

3) Information Sheet: bring to lecture on or
before Friday January 11th

4) Reading in Weiss (see handout)

1/07/13

15

Reading

• Reading in Data Structures and Algorithm
Analysis in Java, 3rd Ed., 2012 by Weiss

• For this week:
› (Topic for Project #1) Weiss 3.1-3.7 –Lists,

Stacks, & Queues

› (Wed) Weiss 1.1-1.6 –Mathematics and Java

› (Fri) Weiss 2.1-2.4 –Algorithm Analysis

1/07/13 16

Bring to Class on Friday:

• Name
• Email address
• Year (1,2,3,4,5)
• Hometown
• Interesting Fact or

what I did over
summer/winter
break.

1/07/13

17

Today’s Outline
• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

1/07/13

Data Structures + Threads

• About 70% of the course is a “classic data-structures
course”
› Timeless, essential stuff

› Core data structures and algorithms that underlie most software
› How to analyze algorithms

• Plus a serious first treatment of programming with
multiple threads
› For parallelism: Use multiple processors to finish sooner
› For concurrency: Correct access to shared resources

› Will make many connections to the classic material

1/07/13 18

4

Where 332 fits

� Most common pre-req for 400-level courses

� Essential stuff for many internships too!

19

312
Foundations

II

332
Data

Abstractions

311
Foundations

I

351
Hw/Sw

Interface

352
Hw Design /

Impl

EE205
Signal

Conditioning
(or EE215)

344
Data

Management

341
Programming
Languages

STAT391

331
Sw Design /

Impl

333
Systems

Programming

390A
Tools

required

CS required

CompE required

not required

pre-req

co-req or pre-req

1/07/13

What 332 is about
• Deeply understand the basic structures used in all

software
› Understand the data structures and their trade-offs

› Rigorously analyze the algorithms that use them (math!)
› Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of
multithreading

• Practice design, analysis, and implementation
› The elegant interplay of “theory” and “engineering” at the

core of computer science

1/07/13 20

21

Goals
• You will understand:

› what the tools are for storing and
processing common data types

› which tools are appropriate for which need

• So that you will be able to:
› make good design choices as a developer,

project manager, or system customer

› justify and communicate your design
decisions

1/07/13

Views on this course
• Prof. Steve Seitz (graphics):

› 100-level and some 300-level courses teach how to
do stuff

› 332 teaches really cool ways to do stuff
› 400 level courses teach how to do really cool stuff

• Prof. James Fogarty (HCI):
› Computers are fricking insane

• Raw power can enable bad solutions to many problems

› This course is about how to attack non-trivial
problems

• Problems where it actually matters how you do it

1/07/13 22

Views on this course
• Prof. Dan Grossman (prog. langs.):

Three years from now this course will seem like it
was a waste of your time because you can’t imagine
not “just knowing” every main concept in it
› Key abstractions computer scientists and

engineers use almost every day
› A big piece of what separates us from others

1/07/13 23

Views on this course
• This is the class where you begin to

think like a computer scientist
› You stop thinking in Java or C++ code

› You start thinking that this is a hashtable
problem, a stack problem, etc.

1/07/13 24

5

25

Data structures?

“Clever” ways to organize information in
order to enable efficient computation
over that information.

1/07/13 26

Data structures!

A data structure supports certain operations,
each with a:
› Meaning: what does the operation do/return?
› Performance: how efficient is the operation?

Examples:
› List with operations insert and delete
› Stack with operations push and pop

1/07/13

27

Trade-offs

A data structure strives to provide many useful, efficient
operations

But there are unavoidable trade-offs:
› Time vs. space
› One operation more efficient if another less efficient

› Generality vs. simplicity vs. performance

That is why there are many data structures and
educated CSEers internalize their main trade-offs and
techniques
› And recognize logarithmic < linear < quadratic < exponential

1/07/13 28

Terminology

• Abstract Data Type (ADT)
› Mathematical description of a “thing” with set of

operations on that “thing”

• Algorithm
› A high level, language-independent description of

a step-by-step process

• Data structure
› A specific organization of data and family of

algorithms for implementing an ADT

• Implementation of a data structure
› A specific implementation in a specific language

1/07/13

29

Example: Stacks
• The Stack ADT supports operations:

› isEmpty: initially true, later have there been same number of
pops as pushes

› push: takes an item

› pop: raises an error if isEmpty, else returns most-recently
pushed item not yet returned by a pop

› … (Often some more operations)

• A Stack data structure could use a linked-list or an array
or something else, and associated algorithms for the
operations

• One implementation is in the library java.util.Stack

1/07/13 30

Why useful
The Stack ADT is a useful abstraction because:
• It arises all the time in programming (see text for

more)
› Recursive function calls
› Balancing symbols (parentheses)

› Evaluating postfix notation: 3 4 + 5 *
› Clever: Infix ((3+4) * 5) to postfix conversion (see text)

• We can code up a reusable library
• We can communicate in high-level terms

› “Use a stack and push numbers, popping for operators…”
› Rather than, “create a linked list and add a node when…”

1/07/13

6

31

Today’s Outline
• Introductions
• Administrative Info
• What is this course about?
• Review: Queues and stacks

1/07/13 32

The Queue ADT

Queue Operations:

create

destroy

enqueue

dequeue

is_empty

F E D C Benqueue dequeueG A

1/07/13

33

Circular Array Queue Data Structure

// Basic idea only!
enqueue(x) {

Q[back] = x;
back = (back + 1) % size

}

// Basic idea only!
dequeue() {

x = Q[front];
front = (front + 1) % size;
return x;

}

b c d e f
Q: 0 size - 1

front back

• What if queue is empty?
› Enqueue?
› Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of

the operations?
• Can you find the kth

element in the queue?

1/07/13 34

Linked List Queue Data Structure
b c d e f

front back

// Basic idea only!
enqueue(x) {

back.next = new Node(x);
back = back.next;

}

// Basic idea only!
dequeue() {

x = front.item;
front = front.next;
return x;

}

• What if queue is empty?
› Enqueue?
› Dequeue?

• Can list be full?
• How to test for empty?
• What is the complexity of

the operations?
• Can you find the kth

element in the queue?

1/07/13

35

Circular Array vs. Linked List

1/07/13 36

Circular Array vs. Linked List

Array:
– May waste unneeded space

or run out of space
– Space per element excellent
– Operations very simple / fast

– Constant-time access to kth

element

– For operation insertAtPosition,
must shift all later elements
› Not in Queue ADT

List:
– Always just enough space
– But more space per element

– Operations very simple / fast
– No constant-time access to kth

element

– For operation insertAtPosition
must traverse all earlier elements
– Not in Queue ADT

1/07/13

7

37

The Stack ADT
• Stack Operations:
create

destroy

push

pop

top/peek

is_empty

• Can also be implemented with an array or a linked list
› This is Project 1!

› Like queues, type of elements is irrelevant
• Ideal for Java’s generic types (section and Project 1B)

A

B
C
D
E
F

E D C B A

F

1/07/13 38

Homework for Today!!

0) Review Java & install Eclipse
1) Project #1: (released by Wednesday) bring

questions to section on Thursday
2) Preliminary Survey: fill out by evening of

Thurs January 10th

3) Information Sheet: bring to lecture on or
before Friday January 11th

4) Reading in Weiss (see handout)

1/07/13

