
 Page 1 of 2

CSE 332 Data Abstractions, Winter 2013

Homework 4
Due: Friday, Feb 15, 2013 at the BEGINNING of lecture. Your work should be readable as well as

correct. You should refer to the written homework guidelines on the course website for a reminder about

what is acceptable pseudocode. You will notice that homework Four has FOUR fun questions!! Please

write your section at the top of your homework.

Problem 1: Algorithm Analysis
The methods below implement recursive algorithms that return the first index in an unsorted array to hold

17, or -1 if no such index exists.

int first17_a(int[] array, int i) {

 if (i >= array.length)

return -1;

 if (array[i]==17)

return 0;

 if (first17_a(array,i+1) == -1)

 return -1;

 return 1 + first17_a(array,i+1);

}

int first17_b(int[] array, int i) {

 if (i >= array.length)

return -1;

 if (array[i]==17)

return 0;

 int x = first17_b(array,i+1);

 if (x == -1)

return -1;

 return x + 1;

}

(a) What kind of input produces the worst-case running time in an absolute “number of

operations” sense, not a big-O sense, for first17_a (arr,0)?

(b) For first17_a, give a recurrence relation, including a base case, describing the worst-case

running time, where n is the length of the array. You may use whatever constants you wish for

constant-time work.

(c) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_a(arr,0)

given your answer to the previous question. That is, find a closed form for your recurrence

relation. Show how you got your answer.

(d) What kind of input produces the worst case running time in an absolute “number of

operations” sense, not a big-O sense, for first17_b(arr,0)?

(e) For first17_b, give a recurrence relation, including a base case, describing the worst-case

running time, where n is the length of the array. You may use whatever constants you wish for

constant-time work.

(f) Give a tight asymptotic (“big-Oh”) upper bound for the running time of first17_b(arr,0)

given your answer to the previous question. That is, find a closed form for your recurrence

relation. Show how you got your answer.

(g) Give a tight asymptotic (“big-Omega”) worst-case lower bound for the problem of finding

the first 17 in an array (not a specific algorithm). Briefly justify your answer.

(See back of this page for remaining problems)

 Page 2 of 2

Problem 2: Deletion in Hashing
This problem is to get you to think about how lazy deletion is handled in hash tables using open

addressing.

(a) Suppose a hash table is accessed by open addressing and contains a cell X marked as

“deleted”. Suppose that the next successful find hits and moves past cell X and finds the key in

cell Y. Suppose we move the found key to cell X, mark cell X as “active” and mark cell Y as

“open”. Suppose this policy is used for every find. Would you expect this to work better or

worse compared to not modifying the table? Explain your answer.

(b) Suppose that instead of marking cell Y as “open” in the previous question, you mark it as

“deleted” (it contains no value, but we treat it as a collision). Suppose this policy is used for

every find. Would you expect this to work better or worse compared to not modifying the table?

Explain your answer.

Problem 3: Sorting Phone Numbers
The input to this problem consists of a sequence of 7-digit phone numbers written as simple

integers (e.g. 5551202 represents the phone number 555-1202). The sequence is provided via an

Iterator<Integer> - you do not get an array containing these phone numbers. No phone number

appears in the input more than once but there is no limit on the size of the input. Write precise

(preferable Java-like) pseudocode for a method that prints out the phone numbers (as integers) in

the list in ascending order. Your solution must not use more than 2MB of memory. (Note: It

cannot use any other storage – hard drive, network, etc.) Explain why your solution is under the

2MB limit.

Problem 4: QuickSort Variation
Consider this pseudocode for quicksort, which leaves pivot selection and partitioning to helper

functions not shown:

// sort positions lo through hi-1 in array using quicksort (no cut-off)

quicksort(int[] array, int lo, int hi) {

if (lo>=hi-1) return;

pivot = pickPivot(array,lo,hi);

pivotIndex = partition(array,lo,hi,pivot);

quicksort(array,lo,pivotIndex);

quicksort(array,pivotIndex+1,hi);

}

Modify this algorithm to take an additional integer argument enough:

// sort at least enough positions of lo through hi-1 in array using quicksort

// (no cut-off)

quicksort(int[] array, int lo, int hi, int enough) { ... }

We change the definition of correctness to require only that at least the first ‘enough’ entries

(from left-to right) are sorted and contain the smallest ‘enough’ values. (If enough >= hi-lo, then

the whole range must be sorted as usual.) While one correct solution is to ignore the enough

parameter, come up with a better solution that skips completely unnecessary recursive calls.

Assume the initial call to quicksort specifies that ‘lo’ is 0 and ‘hi’ is the upper-bound of the

array. Watch your off-by-one errors!

