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CSE 332 Midterm – 02/08/2012 
 

 

Name _______________________________________  

 

 

Wait to turn the page until after everyone is told to begin. 

 

 

Write your full name above.  Every other page shares a unique identifier with this one. 

 

 

Do not write any confidential information on this page. 

 

 

There are 7 questions worth a total of 70 points. Budget your time to maximize the points 

you can earn in the allotted 50 minutes. Keep answers brief and to the point. 

 

The exam is closed book and closed notes.  

 

Please keep everything related to a question on the page allocated for that question.  

This ensures the questions can be separated from each other for efficient grading. 

 

Two pages of scrap paper are also provided at the end of the exam. If you use these pages, 

either as scrap or because you need the additional space for a problem, be sure to indicate 

on which problem you are working. 
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This page is obviously for instructor use only. 

 

 

 

 

 

Score _________________ / 70 

 

 

1. ______ / 10  Loops and Big-O Analysis 

2. ______ / 10  Queues 

3. ______ / 10  Binary Heaps 

4. ______ / 10  AVL Trees 

5. ______ / 10  B-Trees 

6. ______ / 10  Hashing 

7. ______ / 10  Sorting 
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1) 10 Points 
 

Compute an appropriately tight O (big-O) bound on the running time of each code 

fragment, in terms of n. Assume integer arithmetic. Circle your answer for each fragment. 

 

a)  for(i = 0; i < n; i++) { 
        for(j = 0; j < n; j++) { 

            for(k = 0; k < i * j; k++) { 

                sum++; 

            } 

        } 

    } 

 

 

b)  for(i = 1; i < n; i = i * 2) { 
        for(j = 1; j < i; j++) { 

            sum++; 

        } 

    } 

 

 

c)  for(i = 0; i < n; i++) { 
        myArray = new array[i]; 

        for(j = 0; j < i; j++) { 

            myArray[j] = random(); 

        } 

        mergeSort(myArray); 

    } 

 

 

d)  for(i = 0; i < n; i++) { 
        tree = new UnbalancedBinarySearchTree(); 

        for(j = 0; j < n; j++) { 

            tree.insert(j); 

        } 

    } 

 

 

e)  tree = new AVLTree(); 
   for(i = 0; i < n; i++) { 

        for(j = 0; j < n; j++) { 

            tree.insert(random()); 

        } 

    } 
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2) 10 points 

 

This problem asks you to describe how to perform queue operations in O(1) time for a 

link-based implementation of a queue. Declare variables used by your implementation 

(e.g., any pointers maintained in the queue). Provide pseudocode for the requested 

operations (precise English is also acceptable, but pseudocode will be more concise). 

Finally, show the state of your data structure after the given operations (including the 

values of the variables you declared in (a) and manipulated in (b) and (c)). 

 

Assume a node class containing fields value and next. 

 

For an link-based implementation of a queue with O(1) enqueue and O(1) dequeue: 

 

a) Declare any variables used by your implementation: 

 

 

 

 

b) Describe how to implement O(1) enqueue: 

 

 

 

 

 

 

 

 

 

c) Describe how to implement O(1) dequeue: 

 

 

 

 

 

 

 

 

 

d) Draw your data structure after executing the following operations. You only need to 

show a total of one queue (the one which exists after all five operations complete). 

 
 enqueue(54); enqueue(21); dequeue(); enqueue(13); enqueue(47); 
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3) 10 Points 
 

Consider this binary min-heap:                 1 
     /   \ 

   6       9 

 /   \   /    

10   7  11     

 

 

Perform the following operations in order, drawing the result after each operation and 

using it as the starting point for the next operation. You only need to show the result of 

the operation, but showing your work will allow partial credit in case of error.  

If the space here is insufficient, use the back of this sheet (clearly labeling your work). 

Circle the result of each operation so we can distinguish it from intermediate work. 

 

a) DeleteMin 

 

 

 

 

 

 

 

 

 

b) Insert 8 

 

 

 

 

 

 

 

 

 

c) Insert 2 
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d) Draw an efficient array-based representation of your final heap from step c. 

 

 

 

 

 

 

 

 

e) In your array-based representation, what is the index of: 

 

 the parent of the node at index i: 

 

 

 

 the left child of the node at index i: 

 

 

 

 the right child of the node at index i: 
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4) 10 Points 
 

Consider this AVL tree:                          9 
   /   \ 

  4     77 

       /   

      68  

 

Perform the following operations in order, drawing the result after each operation and 

using it as the starting point for the next operation. You only need to show the result of 

the operation, but showing your work will allow partial credit in case of error.  

Circle the result of each operation so we can distinguish it from intermediate work. 

 

a)  Insert 52 

 

 

 

 

 

 

 

b)  Delete 9  We did not cover general AVL delete. But if you did the previous 

 operation correctly, you can delete this without creating an imbalance. 

 

 

 

 

 

 

 

c)  Insert 75 

 

 

 

 

 

 

 

d)  Insert 55 
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5) 10 points 

 

Perform the following B-Tree operations. Use the algorithms presented in lecture, 

homework, and the text (i.e., for a B+ Tree). Do not adopt during insertion (although 

possible, this was not the presented algorithm). You only need to show the result of the 

operation, but showing your work will allow partial credit in case of error. Circle the 

result of each operation so we can distinguish it from intermediate work. 

 

a) Beginning with the provided tree, insert an object with key 40. 

 

 
 

 

 

 

 

 

 

 

 

 

b) Beginning with the provided tree, delete the object with key 14. 
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Answer the following questions regarding a B-Tree implementation. Answer based on the 

data structure presented in lecture, homework, and the text (i.e., based on a B+ Tree). 

 

Your brilliant teaching assistants have implemented a B-Tree in order to better track and 

correct your instructor’s many mistakes. They give a name to each mistake and use the 

name as a key to store information about when the mistake was made, who is responsible 

for correcting it, and information about their progress. The parameters of the tree are: 

 

     Pointer Size = 8 bytes 

     Key Size = 12 bytes 

     Data Size = 52 bytes 

     M = 13 

     L = 4 

 

c) Assuming these parameters were appropriately chosen to fit within a disk block, what 

is the likely size of disk blocks on the machine where this implementation is deployed? 

 Give a numeric answer and a short justification. This justification should be based 

on one or more equations using the above parameter values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) Given these B-Tree parameters, what is the maximum number of items that can be 

stored in a tree of height 2?  Give a numeric answer. Show your work for partial 

credit in case of an arithmetic error, but we do not expect a general equation. 
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6) 10 points 

 

Using a hash table of size 10 with open addressing and quadratic probing, perform the 

following sequences of actions and answer the associated questions. Objects can be 

represented simply by their hashcodes. Do not grow the size of the hashtable. 

 

a) Insert a sequence of objects with hashcodes 22, 42, 47, 12, 37, 57. 

 

0 1 2 3 4 5 6 7 8 9 

          

 

b) What is the load factor of your table after (a)? 

 

 

 

c) Can we guarantee that any additional insert will succeed?  Why or why not? 

 Make a simple and precise argument based on your knowledge of hashtables. 

 Your argument must be based in general properties of open addressing hashing with 

 quadratic probing, not simply the particular set of keys in this table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) Delete the object with hashcode 47. 

 

0 1 2 3 4 5 6 7 8 9 

          

 

e) Insert a sequence of objects with hashcodes 53, 83. 

 

0 1 2 3 4 5 6 7 8 9 
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7) 10 Points 

 

a) Show the state of the array after each execution of the outer loop of a selection sort. 

Make the minimal number of swaps necessary in each iteration. 

 

27 64 44 38 40 9 
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b) Show a quicksort partition of this array. Choose a pivot using a median of the first, 

middle, and last elements of the array. Show the array after each swap conducted in 

the course of the partition. Make the minimal number of necessary swaps. 

 

The provided number of boxes does not correspond to the number of necessary swaps. 

A correct answer will complete the partition and leave some of these boxes blank. 

 

After completing the partition, indicate which subarrays will be recursively quicksorted 

(e.g., by circling each of them and writing ‘recurse’ next to each of your circles). 

 

27 64 44 38 40 9 52 

 

    
 

  

 

    
 

  

 

    
 

  

 

    
 

  

 

    
 

  

 

    
 

  

 

    
 

  

 

    
 

  

 

 

 

 

  



Unique ID:  «Unique_ID» 13 

This page provided as scrap.  Please indicate on which problem you are working. 
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This page provided as scrap.  Please indicate on which problem you are working. 

 


