

 Page 1 of 15

Name: ___________ KEY ________________

Email address: _____________________________________

Quiz Section: __________

CSE 326 Winter 2010: Midterm Exam
(closed book, closed notes, calculators o.k.)

Instructions Read the directions for each question carefully before answering. We will
give partial credit based on the work you write down, so show your work! Use only the
data structures and algorithms we have discussed in class or that were mentioned in the
book so far.

Note: For questions where you are drawing pictures, please circle your final answer for
any credit.

Good Luck!

Total: 108 points. Time: 50 minutes.

Question Max Points Score
1 15
2 6
3 15
4 15
5 6
6 6
7 10
8 10
9 15
10 10

Total 108

 Page 2 of 15

1. (15 pts) Big-O, Big Ω, Big ΘΘΘΘ True/ False

Indicate for each of the statements below whether the statement is true or false. You do
not need to state the reason, but a reason may help you get partial credit.

 a) 100 N3 = Ω(N2)

 b) 2N/2 = O(2N)

 c) N2 + N2 = O(N3)

 d) N log N + N2 = Θ(N2)

 e) ½ (N2) = Θ(N3)

 TRUE / FALSE

 TRUE / FALSE

 TRUE / FALSE

 TRUE / FALSE

 TRUE / FALSE

 Page 3 of 15

2. (6 pts) Recurrence Relationships -

Please circle your answer. Be sure to keep track of constants exactly (e.g. don’t use
“C” in your answer). We want the actual function, not just the big-O class.

Suppose that the running time of an algorithm satisfies the recurrence relationship

 T(N) = 2 * T(N/2) + 2 for N and integer greater than 1.
and
 T(1) = 5.

Solve for T(N). In other words express T(N) as a function of N. For partial credit,
please show your work.

 Page 4 of 15

3. (15 pts) Binary Min Heaps. To avoid ambiguity, for this question please give

your answer in Java. Recall that a binary min heap with n elements can be stored in
an array A, where A[1] contains the root of the tree. Given that values are stored in
A[1] to A[size], percolateUp and percolateDown are defined below:

// Given that values are stored in A[1] to A[size],
// percolate the value A[i] up as needed.
void percolateUp(int[] A, int size, int i);

// percolate the value A[i] down as needed.
void percolateDown(int[] A, int size, int i);

a) Implement the deleteMin method (as described in class) below. You may call

percolateUp and percolateDown as needed:

// Given that values are stored in A[1] to A[size],
// remove and return the smallest value in the heap.
int deleteMin(int[] A, int size) {

 if (size < 1) throw new IllegalArgumentException();
 // or otherwise test for the case of an empty heap .

 int temp = A[1];
 A[1] = A[size];
 // size--; // not required because size is a

 // parameter, has no effect. Should have been
 // specified as a class method…
 percolateDown(A, size, 1);
 return temp;

 }

 Page 5 of 15

b) Implement the percolateUp method below:

// Given that values are stored in A[1] to A[size],
// percolate the value A[i] up as needed.
void percolateUp(int[] A, int size, int i) {

 int temp;
 for (; (i > 1) && (A[i/2] > A[i]); i /= 2) {
 temp = A[1/2];
 A[i/2] = A[i];
 A[i] = temp;
 }
}

 Page 6 of 15

4. (15 pts) Trees

a.) (6 pts) Mark the following properties for each node of the tree below in the space
indicated for each node: Null Path Length (NPL) and Height (H).

b.) (9 pts) Also, circle yes or no to indicate whether the tree above might represent each
of the following data structures. If you circle no, give one specific reason why the tree
could not be that data structure.

• AVL tree yes no
Not ordered like a BST, 8 should not be to the left of 8 (or 2).

• Binary Min heap yes no
Not a complete tree, node 20 would need to be the left child of 16.

• Leftist heap yes no
Not leftist at node 16, the NPL of 16s left child is -1 which is < 0.

2

16 3

8 9
20

NPL H
NPL H

NPL H

NPL H

NPL H

NPL H

 Page 7 of 15

5. (6 pts) Running Time Analysis

Give the best O-bound on the worst case running time for each of the following in terms
of N. No explanation is required, but an explanation may help for partial credit. Assume
that all keys are distinct.

a) Merging two skew heaps, the largest heap is of size N

O(N) - Try merging a linked list 1,2, …N with a single value N+1

b) Inserting a value into a leftist heap of size N

O(log N) – a merge of a single value with another heap, cost of merge is O(logN).

c) Merging two binary heaps, the largest heap is of size N

O(N) – use Floyds buildheap, copy all values into an array and then run buildheap.

6. (6 pts) Short Answer

a) How long would you expect inserting a value into a binomial queue to take on
average? Justify your answer.

O(1) – Your worst case is like adding 1 to 111111. You must continually merge two
trees of the same size together and carry them on to the next place, but then you
already have a tree of that size so must merge it with the next one, etc. causing you
to examine and merge with all trees in the BQ – O(log N). For the average case, we
want to know when we might expect to see a 0 when moving from right to left,
because when we find a 0, we can stop – we can leave any carry in that location.
Assuming that our BQ size N is equally likely to be an odd number as it is an even
number, we expect the BQ to have nothing in the B0 location 50% of the time.
Similarly, we expect nothing in the B1 location 50% of the time. Thus, you expect to
have to look at 2 locations on average before you find a Bk that does not exist.

b) Give one reason why inserting a value into a d-heap containing N items might be
faster than inserting a value into a binary heap of the same size.

If d > 2 then the d-heap is likely to have fewer levels than a binary heap of the same
size. On insertions you percolate up, and only compare with one parent. So you
don’t get to take advantage of the spatial locality of examining siblings that are next
to each other. (Percolate down has to examine all siblings which is more than in a
binary heap if d > 2, but hopefully the heap is shorter, and you do get to take
advantage of locality in that case.)

 Page 8 of 15

7. (10 pts) AVL Trees
a) Draw the AVL tree that results from inserting the keys 4, 1, 2, 3, 9, 5, 7, 15 in that
order into an initially empty AVL tree. You are only required to show the final tree,
although if you draw intermediate trees, please circle your final result for ANY credit.

b) Give a Post-order traversal of
your final tree here: ________1, 3, 2, 5, 15, 9, 7, 4 _______

 Page 9 of 15

7. b) Don’t forget to give a post-order traversal of your final tree from part a)! Write your
answer at the bottom of the previous page.

 Page 10 of 15

8. (10 pts) Leftist Heap Merge

Merge the following two leftist min heaps using the leftist heap merge described in class.
You are only required to show the final tree, although if you draw intermediate trees,
please circle your final result for ANY credit. You may continue your answer to this
question on the next page if needed.

5

15 6

8 7

9
0

1

16 4

11 17 20

 Page 11 of 15

8. Leftist Heap Merge continued

 Page 12 of 15

9. (15 pts) Binary Min Heaps

a) (10 pts) Draw the binary min heap that results from inserting 12, 1, 3, 7, 4, 5, 15, 0, 6
in that order into an initially empty binary heap . You do not need to show the array
representation of the heap. You are only required to show the final tree, although if you
draw intermediate trees, please circle your final result for ANY credit.

 Page 13 of 15

9. Binary Min Heaps (continued)

b) (5 pts) Draw the result of doing 2 deletemins on the heap you created in part a. You
are only required to show the final tree, although if you draw intermediate trees, please
circle your final result for ANY credit.

 Page 14 of 15

10. (10 pts) Binomial Queues –

Draw a binomial queue that could result from inserting 12, 1, 3, 7, 4, 5, 15, 0, 6 in that
order into an initially empty binomial queue. You are only required to show the final
queue, although if you draw intermediate queues, please circle your final result for ANY
credit. You may continue onto the next page if needed.

 Page 15 of 15

10. Binomial Queues (continued)

