CSE332: Data Abstractions
 Section 2

Hyeln Kim

Spring 2013

Section Agenda

- Bugs \& Testing
- Induction Review
- Recurrence Relations
- Asymptotic Analysis
- Homework Tips \& Questions

Bugs \& Testing

Bugs \& Testing

- Software Bugs

- Error in a computer program
- Causes program to behave in unexpected ways

Bugs \& Testing

- Why Testing?

Bugs can be costly

- Cost points in homework
- Can cost \$\$\$ and even life (Therac-25)

Interesting Bug References

- LíSt of bugS http://en.wikipedia.org/wiki/List of software bugs
- History's worst
http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all

Bugs \& Testing

- Reverse.java does not test your stack!!
- Stack can still have lots of bugs when working perfectly with Reverse.java
- Some extreme case in past quarter: it only worked with Reverse.java (Not a good stack!)

Bugs \& Testing

- Tips for Testing
- Make sure program meets the spec
- Test if each method works independently
- Test if methods work together
- Test for edge cases

Bugs \& Testing

- Make sure program meets the spec
- What is wrong with this implementation?

```
public class ListStack implements DStack {
    private LinkedList<Double> myStack;
    public ListStack() {
        myStack = new LinkedList<Double>();
    }
    public void push(double d) {
        myStack.add(d);
    }
}
```


Bugs \& Testing

- Test if each method works
- Four public methods boolean isEmpty()
True if no elements, false otherwise
void push(E elem)
Add element on top of stack
E pop()
Remove \& return top element, exception when empty
E peek()
Return (but don't remove) top element, exception when empty

Bugs \& Testing

- Test if each method works

Thorough commenting can help

- Think about what each method is supposed to do
- Check if the method actually does what you think it should do

Bugs \& Testing

- Test if methods work together
- Should work in any order

stack.push(3.3)

stack.isEmpty()
stack.push(9.3)
stack.peek()
stack.pop()
stack.push(100)
stack.push(4343)

Bugs \& Testing

- Test for edge cases
- Empty stack
- Push after resizing
- Anything else?

Bugs \& Testing

- Testing tools: JUnit Testing
- Not required for Project 1
- Required for Project 2
- Covered in section next week

Induction Review

Induction Review

- Proof by Induction
- Prove that the first statement in the infinite sequence of statements is true (Base case)
- Prove that if any one statement in the infinite sequence of statements is true, then so is the next one. (Inductive case)

Induction Review

- Proof by Induction

To prove statement $\mathrm{P}(\mathrm{n})$,

- Base Case:

Prove that $P(1)$ is true

- Inductive Case:

Assuming $P(k)$ is true,
prove that $P(k+1)$ is true

Recurrence Relations

Recurrence Relations

- Recursively defines a Sequence
- Example: $T(n)=T(n-1)+3, T(1)=5$ ${ }^{\wedge}$ Has $T(x)$ in definition
- Solving Recurrence Relation
- Eliminate recursive part in definition
= Find "Closed Form"
- Example: $T(n)=3 n+2$

Recurrence Relations

- Expansion Method example
- Solve $T(n)=T(n-1)+2 n-1, \quad T(1)=1$

$$
\begin{aligned}
T(n) & =T(n-1)+2 n-1 \\
T(n-1) & =T([n-1]-1)+2[n-1]-1 \\
& =T(n-2)+2(n-1)-1 \\
T(n-2) & =T([n-2]-1)+2[n-2]-1 \\
& =T(n-3)+2(n-2)-1
\end{aligned}
$$

Recurrence Relations

- Expansion Method example

$$
\begin{aligned}
& T(n)=T(n-1)+2 n-1 \\
& T(n-1)=T(n-2)+2(n-1)-1 \\
& T(n-2)=T(n-3)+2(n-2)-1
\end{aligned}
$$

$$
T(n)=[T(n-2)+2(n-1)-1]+2 n-1
$$

$$
=T(n-2)+2(n-1)+2 n-2
$$

$$
T(n)=[T(n-3)+2(n-2)-1]+2(n-1)+2 n-2
$$

$$
=T(n-3)+2(n-2)+2(n-1)+2 n-3
$$

Recurrence Relations

- Expansion Method example
$T(n)=T(n-1)+2 n-1$
$T(n)=T(n-2)+2(n-1)+2 n-2$
$T(n)=T(n-3)+2(n-2)+2(n-1)+2 n-3$
$T(n)=T(n-k)+[2(n-(k-1))+\ldots+2(n-1)+2 n]-k$
$=T(n-k)+[2(n-k+1)+\ldots+2(n-1)+2 n]-k$

Recurrence Relations

- Expansion Method example
$T(n)=T(n-k)+[2(n-k+1)+\ldots+2(n-1)+2 n]-k$
When expanded all the way down, $T(n-k)=T(1)$ $n-k=1, k=n-1$
$T(n)=T(n-[n-1])+[2(n-[n-1]+1)+\ldots+2(n-1)$ $+2 n]-[n-1]$
$=T(1)+[2(2)+\ldots+2(n-1)+2 n]-n+1$

Recurrence Relations

- Expansion Method example

$$
\begin{aligned}
T(n) & =T(1)+[2(2)+\ldots+2(n-1)+2 n]-n+1 \\
& =T(1)+2[2+\ldots+(n-1)+n]-n+1 \\
& =T(1)+2[(n+1)(n / 2)-1]-n+1 \\
& =T(1)+(n+1)(n)-2-n+1 \\
& =T(1)+\left(n^{2}+n\right)-n-1 \\
& =T(1)+n^{2}-1 \\
& =1+n^{2}-1 \\
& =n^{2}
\end{aligned}
$$

Recurrence Relations

- Expansion Method example Check it!
$T(n)=T(n-1)+2 n-1, \quad T(1)=1$
$T(n)=n^{2}$
$T(1)=1$
same as 1^{2}
$T(2)=T(1)+2(2)-1=4$
same as 2^{2}
$\mathrm{T}(3)=\mathrm{T}(2)+2(3)-1=9$
same as 3^{2}
$T(4)=T(3)+2(4)-1=16$
same as 4^{2}

Asymptotic Analysis

Asymptotic Analysis

- Describe Limiting behavior of $F(n)$
- Characterize growth rate of $F(n)$
- Use $O(\mathrm{~g}(\mathrm{n})), \Omega(\mathrm{g}(\mathrm{n})), \Theta(\mathrm{g}(\mathrm{n}))$ for set of functions with asymptotic behavior $\square, \square, \square \& \square$ to $\mathrm{g}(\mathrm{n})$
- Upper Bound: O(n) $\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$ if and only if there exist positive constants c and n_{0} such that $\mathrm{f}(\mathrm{n}) \square \mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}_{0} \square \mathrm{n}$

Asymptotic Analysis

- Lower Bound: $\mathbf{\Omega (n)}$ $\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))$ if and only if there exist positive constants c and n_{0} such that $c^{*} g(n) \square f(n)$ for all $n_{0} \square n$
- Tight Bound: $\boldsymbol{\Theta}(\mathbf{n})$ $\mathrm{f}(\mathrm{n}) \in \Theta(\mathrm{g}(\mathrm{n}))$ if and only if $\mathrm{f}(\mathrm{n}) \in \Omega(\mathrm{g}(\mathrm{n}))$ and $\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$

Asymptotic Analysis

- Ordering Growth rates ($\mathbf{k}=$ constant)
- Ignore Low-Order terms \& Coefficients

O(k) constant
$\mathrm{O}(\log \mathrm{n})$ logarithmic
O(n) linear
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ polynomial
$\mathrm{O}\left(\mathrm{k}^{\mathrm{n}}\right) \quad$ exponential $(\mathrm{k}>1)$

Increasing
Growth rate

Asymptotic Analysis

- Ordering Growth rates
(

Asymptotic Analysis

- Ordering Growth rates
$-\log ^{k} n \in O\left(n^{b}\right)$ if $1<k \& 0<b$
$-\mathrm{n}^{k} \quad \in \mathrm{O}\left(\mathrm{b}^{\mathrm{n}}\right)$ if $0<k \& 1<b$
- Ordering Example
$2 n^{100}+10 n$
n^{100}
4
$2^{n / 100}+2^{n / 270}$
$2^{n / 100}$
5
$1000 n+\log ^{8} n$
n
3
$23785 n^{1 / 2}$
$n^{1 / 2}$
2
$1000 \log ^{10} n+1^{n / 300} \quad \log ^{10} n$

Asymptotic Analysis

- Proof Example: $\mathbf{f}(\mathrm{n}) \in \mathbf{O}(\mathrm{g}(\mathrm{n}))$
- Prove or disprove nlog $n \in O(3 n)$
$n \log n \in O(3 n)$
nlog $n \quad \square c^{*}(3 n)$, for $0<c \& \& 0<n_{0} \square n$ (1/3) $\log n \square c$
but as $n \rightarrow \infty, \log n \rightarrow \infty$
Finite constant c always greater than $\log n$ cannot exist, no matter what n_{0} we choose $n \log \mathrm{n} \notin \mathrm{O}(3 \mathrm{n})$

Homework Tips

Homework Tips

- Problem \#1
- Use formula in the book (You don't have to derive it by yourself)
- Problem \#2
- Use following rules:

1. $\left\lfloor\frac{\left\lfloor\left.\frac{x}{m} \right\rvert\,\right.}{n}\right\rfloor=\left\lfloor\frac{x}{m n}\right\rfloor$ which means $\left\lfloor\frac{\left\lfloor\left.\frac{n}{2} \right\rvert\,\right.}{2}\right\rfloor=\left\lfloor\frac{n}{2^{2}}\right\rfloor$
2. $\lfloor x\rfloor=m$ if and only if $m \leq x<m+1$

Homework Tips

- Problem \#3
$-f(n) \times 10^{-6} \sec \square t \sec$, solve for n
- Problem \#4 <= Not in this HW
- Remember that when you are proving $P(k+1)$, you are assuming $P(k)$ no matter how silly it is!
- Find flaw in inductive reasoning

Homework Tips

- Problem \#5
- Use definitions and show you can/cannot find the constant c
- Problem \#6
- Analyze runtime of each loop \& merge when appropriate
- Practice finding exact runtime when you can
- Think about maximum iteration of each loop

