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Announcements 

• Homework 5 – due NOW 

• Homework 6 – due Friday May 24 – submit code electronically 

 

• Project 3 – the last programming project! 

– Partner Selection - Wed, May 22, 11pm 

– Version 1 & 2 - Tues May 28, 2013 11PM  

– ALL Code - Tues June 4, 2013 11PM 

– Experiments & Writeup - Thurs June 6, 2013, 11PM  
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Outline 

Done: 

• How to use fork and join to write a parallel algorithm 

• Why using divide-and-conquer with lots of small tasks is best 

– Combines results in parallel 

• Some Java and ForkJoin Framework specifics 

– More pragmatics (e.g., installation) in separate notes 

 

Now: 

• More examples of simple parallel programs 

• Arrays & balanced trees support parallelism better than linked lists 

• Asymptotic analysis for fork-join parallelism 

• Amdahl’s Law 
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What else looks like this? 

Saw summing an array went from O(n) sequential to O(log n) parallel 

(assuming a lot of processors and very large n) 

– Exponential speed-up in theory (n / log n grows exponentially) 
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+ + + + + + + + 

+ + + + 

+ + 

+ 

• Anything that can use results from two halves and merge them 

in O(1) time has the same property… 
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Extending Parallel Sum 
• We can tweak the ‘parallel sum’ algorithm to do all kinds of things; 

just specify 2 parts (usually) 

– Describe how to compute the result at the ‘cut-off’  

(Sum: Iterate through sequentially and add them up) 

– Describe how to merge results  

(Sum: Just add ‘left’ and ‘right’ results) 

+ + + + + + + + 

+ + + + 

+ + 

+ 
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Examples 

• Parallelization (for some algorithms) 

– Describe how to compute result at the ‘cut-off’ 

– Describe how to merge results 

• How would we do the following (assuming data is given as an array)? 

1. Maximum or minimum element 

2. Is there an element satisfying some property (e.g., is there a 17)? 

3. Left-most element satisfying some property (e.g., first 17) 

4. Smallest rectangle encompassing a number of points (proj3) 

5. Counts; for example, number of strings that start with a vowel 

6. Are these elements in sorted order? 

+ + + + + + + + 
+ + + + 

+ + 
+ 
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Reductions 

• This class of computations are called reductions 

– We ‘reduce’ a large array of data to a single item 

– Produce single answer from collection via an associative 

operator 

– Examples: max, count, leftmost, rightmost, sum, product, … 
 

• Note: Recursive results don’t have to be single numbers or 

strings.  They can be arrays or objects with multiple fields. 

– Example: create a Histogram of test results from a much 

larger array of actual test results 
 

• While many can be parallelized due to nice properties like 

associativity of addition, some things are inherently sequential 

– How we process arr[i] may depend entirely on the result 

of processing arr[i-1] 
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Even easier: Maps (Data Parallelism) 

• A map operates on each element of a collection independently to 

create a new collection of the same size 

– No combining results 

– For arrays, this is so trivial some hardware has direct support 
 

• Canonical example: Vector addition 
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int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 
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Maps in ForkJoin Framework 

• Even though there is no result-combining, it still helps with load 

balancing to create many small tasks 

– Maybe not for vector-add but for more compute-intensive maps 

– The forking is O(log n) whereas theoretically other approaches 

to vector-add is O(1) 
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class VecAdd extends RecursiveAction { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void compute(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.fork(); 
      right.compute(); 
      left.join(); 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2); 
  return ans; 
} 
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Maps and reductions 

Maps and reductions: the “workhorses” of parallel programming 

 

– By far the two most important and common patterns 

• Two more-advanced patterns in next lecture 

 

– Learn to recognize when an algorithm can be written in 

terms of maps and reductions 

 

– Use maps and reductions to describe (parallel) algorithms 

 

– Programming them becomes “trivial” with a little practice 

• Exactly like sequential for-loops seem second-nature 
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Map vs reduce in ForkJoin framework 

• In our examples: 

• Reduce: 

– Parallel-sum extended RecursiveTask 

– Result was returned from compute() 

• Map: 

– Class extended was RecursiveAction 

– Nothing returned from compute() 

– In the above code, the ‘answer’ array was passed in as a 
parameter 

• Doesn’t have to be this way 

– Map can use RecursiveTask to, say, return an array 

– Reduce could use RecursiveAction; depending on what you’re 
passing back via RecursiveTask, could store it as a class 
variable and access it via ‘left’ or ‘right’ when done 
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Digression:  MapReduce on clusters 

• You may have heard of Google’s “map/reduce” 

– Or the open-source version Hadoop 
 

• Idea: Perform maps/reduces on data using many machines 

– The system takes care of distributing the data and managing 

fault tolerance 

– You just write code to map one element and reduce 

elements to a combined result 
 

• Separates how to do recursive divide-and-conquer from what 

computation to perform 

– Old idea in higher-order functional programming transferred 

to large-scale distributed computing 

– Complementary approach to declarative queries for 

databases 
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Trees 

• Maps and reductions work just fine on balanced trees 

– Divide-and-conquer each child rather than array sub-ranges 

– Correct for unbalanced trees, but won’t get much speed-up 

 

• Example: minimum element in an unsorted but balanced binary 
tree in O(log n) time given enough processors 

 

• How to do the sequential cut-off? 

– Store number-of-descendants at each node (easy to maintain) 

– Or could approximate it with, e.g., AVL-tree height 

13 5/17/2013 



Linked lists 

• Can you parallelize maps or reduces over linked lists? 

– Example: Increment all elements of a linked list 

– Example: Sum all elements of a linked list 

– Parallelism still beneficial for expensive per-element operations 

14 

b c d e f 

front back 

• Once again, data structures matter! 

 

• For parallelism, balanced trees generally better than lists so that 
we can get to all the data exponentially faster O(log n) vs. O(n) 

– Trees have the same flexibility as lists compared to arrays 

(in terms of say inserting an item in the middle of the list) 
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Analyzing algorithms 

• Like all algorithms, parallel algorithms should be: 

– Correct  

– Efficient 
 

• For our algorithms so far, correctness is “obvious” so we’ll focus 

on efficiency 

– Want asymptotic bounds 

– Want to analyze the algorithm without regard to a specific 

number of processors 

– The key “magic” of the ForkJoin Framework is getting 

expected run-time performance asymptotically optimal for the 

available number of processors 

• So we can analyze algorithms assuming this guarantee 
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Work and Span 

Let TP be the running time if there are P processors available 
 

Two key measures of run-time: 
 

• Work: How long it would take 1 processor = T1 

– Just “sequentialize” the recursive forking 

 

• Span: How long it would take infinity processors = T 

– The hypothetical ideal for parallelization 

– This is the longest “dependence chain” in the computation 

– Example: O(log n) for summing an array  

• Notice in this example having > n/2 processors is no 

additional help 

– Also called “critical path length” or “computational depth” 
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The DAG 

• A program execution using fork and join can be seen as a DAG 

– Nodes: Pieces of work  

– Edges: Source must finish before destination starts 

17 

• A fork “ends a node” and makes 

two outgoing edges 

• New thread 

• Continuation of current thread 
 

• A join “ends a node” and makes 

a node with two incoming edges 

• Node just ended 

• Last node of thread joined on 
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Our simple examples 

• fork and join are very flexible, but divide-and-conquer maps 

and reductions use them in a very basic way: 

– A tree on top of an upside-down tree 

18 

base cases 

divide  

combine 

results  
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Our simple examples, in more detail 

Our fork and join frequently look like this: 

 

 

 

 

 

 

 

 

base cases 

divide  

combine 

results  

In this context, the span (T) is: 
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’ 

•Example: O(log n) for summing an array; we halve the data down to our 

cut-off, then add back together; O(log n) steps, O(1) time for each 

•Also called “critical path length” or “computational depth” 
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More interesting DAGs? 

• The DAGs are not always this simple 

 

• Example:  

– Suppose combining two results might be expensive enough 

that we want to parallelize each one 

– Then each node in the inverted tree on the previous slide 

would itself expand into another set of nodes for that parallel 

computation 
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Connecting to performance 

• Recall: TP = running time if there are P processors available 
 

• Work = T1 = sum of run-time of all nodes in the DAG 

– That lonely processor does everything 

– Any topological sort is a legal execution 

– O(n) for simple maps and reductions 
 

• Span = T = sum of run-time of all nodes on the most-expensive 

path in the DAG 

– Note: costs are on the nodes not the edges 

– Our infinite army can do everything that is ready to be done, 

but still has to wait for earlier results 

– O(log n) for simple maps and reductions 
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Definitions 

A couple more terms: 
 

• Speed-up on P processors: T1 / TP   
 

• If speed-up is P as we vary P, we call it perfect linear speed-up 

– Perfect linear speed-up means doubling P halves running time 

– Usually our goal; hard to get in practice 
 

• Parallelism is the maximum possible speed-up: T1 / T   

– At some point, adding processors won’t help 

– What that point is depends on the span 
 

Parallel algorithms is about decreasing span without  

increasing work too much 
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Optimal TP: Thanks ForkJoin library! 

• So we know T1 and T  but we want TP  (e.g., P=4) 
 

• Ignoring memory-hierarchy issues (caching), TP can’t beat 

– T1 / P    why not? 

– T         why not? 
 

• So an asymptotically optimal execution would be: 

TP  =  O((T1 / P) + T ) 

– First term dominates for small P, second for large P 
 

• The ForkJoin Framework gives an expected-time guarantee of 

asymptotically optimal!  

– Expected time because it flips coins when scheduling 

– How? For an advanced course (few need to know) 

– Guarantee requires a few assumptions about your code… 
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Division of responsibility 

• Our job as ForkJoin Framework users: 

– Pick a good algorithm, write a program 

– When run, program creates a DAG of things to do 

– Make all the nodes a small-ish and approximately equal 

amount of work 

 

• The framework-writer’s job: 

– Assign work to available processors to avoid idling 

• Let framework-user ignore all scheduling issues 

– Keep constant factors low 

– Give the expected-time optimal guarantee assuming 

framework-user did his/her job 

TP  =  O((T1 / P) + T ) 
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Examples 

TP  =  O((T1 / P) + T ) 
 

• In the algorithms seen so far (e.g., sum an array): 

–  T1 = O(n) 

–  T = O(log n) 

– So expect (ignoring overheads): TP  =  O(n/P + log n) 

 

• Suppose instead: 

–  T1 = O(n2) 

–  T = O(n) 

– So expect (ignoring overheads): TP  =  O(n2/P + n) 
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Amdahl’s Law (mostly bad news) 

• So far: talked about a parallel program in terms of work and span 

 

• In practice, it’s common that your program has: 

 

  a) parts that parallelize well: 

– Such as maps/reduces over arrays and trees  

 

b) …and parts that don’t parallelize at all: 

– Such as reading a linked list, getting input, or just doing 

computations where each step needs the results of previous step 

 

• These unparallelized parts can turn out to be a big bottleneck 
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Amdahl’s Law (mostly bad news) 

Let the work (time to run on 1 processor) be 1 unit time 
 

Let S be the portion of the execution that can’t be parallelized 
 

Then:    T1 = S + (1-S) = 1 
 

Suppose we get perfect linear speedup on the parallel portion 
 

Then:   TP = S + (1-S)/P 
 

So the overall speedup with P processors is (Amdahl’s Law): 

T1 / TP  = 1 / (S + (1-S)/P)   
 

And the parallelism (infinite processors) is: 

T1 / T  = 1 / S 
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Why such bad news? 

 T1 / TP  = 1 / (S + (1-S)/P)    T1 / T  = 1 / S 
 

 

• Suppose 33% of a program is sequential 

– Then a billion processors won’t give a speedup over 3!!! 

• No matter how many processors you use, your speedup is 

bounded by the sequential portion of the program. 
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Amdahl’s Law Example 
Suppose: T1 = S + (1-S) = 1  (aka total program execution time) 

   T1 = 1/3 + 2/3 = 1 

 T1 = 33 sec + 67 sec = 100 sec 
 

 

Time on P processors: TP = S + (1-S)/P  

 

So:  TP = 33 sec + (67 sec)/P 

 T3 = 33 sec + (67 sec)/3 =  
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The future and Amdahl’s Law 

Speedup:   T1 / TP  = 1 / (S + (1-S)/P)     

Max Parallelism:  T1 / T  = 1 / S 
 

 

• Suppose you miss the good old days (1980-2005) where 12ish 

years was long enough to get 100x speedup 

– Now suppose in 12 years, clock speed is the same but you 

get 256 processors instead of 1 

– What portion of the program must be parallelizable to get 

100x speedup? 
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The future and Amdahl’s Law 

Speedup:   T1 / TP  = 1 / (S + (1-S)/P)     

Max Parallelism:  T1 / T  = 1 / S 
 

 

• Suppose you miss the good old days (1980-2005) where 12ish years 

was long enough to get 100x speedup 

– Now suppose in 12 years, clock speed is the same but you get 256 

processors instead of 1 

– What portion of the program must be parallelizable to get 100x 

speedup? 

 

 For 256 processors to get at least 100x speedup, we need 

   100  1 / (S + (1-S)/256) 

 Which means S  .0061  (i.e., 99.4% must be parallelizable)  
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Plots you have to see 

1. Assume 256 processors 

– x-axis: sequential portion S, ranging from .01 to .25 

– y-axis: speedup T1 / TP (will go down as S increases) 

 

2. Assume S = .01 or .1 or .25 (three separate lines) 

– x-axis: number of processors P, ranging from 2 to 32 

– y-axis: speedup T1 / TP (will go up as P increases) 

 

Do this as a homework problem! 

– Chance to use a spreadsheet or other graphing program   

– Compare against your intuition 

– A picture is worth 1000 words, especially if you made it 
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All is not lost 
Amdahl’s Law is a bummer! 

– Unparallelized parts become a bottleneck very quickly 

– But it doesn’t mean additional processors are worthless 

 

• We can find new parallel algorithms 

– Some things that seem entirely sequential turn out to be parallelizable 

– Eg. How can we parallelize the following? 

• Take an array of numbers, return the ‘running sum’ array: 

 

 

 

 

– At a glance, not sure; we’ll explore this shortly 

• We can also change the problem we’re solving or do new things 

– Example: Video games use tons of parallel processors   

• They are not rendering 10-year-old graphics faster 

• They are rendering richer environments and more beautiful (terrible?) 
monsters 

input 

output 

6 4 16 10 16 14 2 8 

6  10  26  36  52  66  68  76 
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Moore and Amdahl 

• Moore’s “Law” is an observation about the progress of the 

semiconductor industry 

– Transistor density doubles roughly every 18 months 
 

• Amdahl’s Law is a mathematical theorem 

– Diminishing returns of adding more processors 
 

• Both are incredibly important in designing computer systems 
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