

CSE 332: Data Abstractions

Lecture 13: Beyond Comparison Sorting

Ruth Anderson Spring 2013

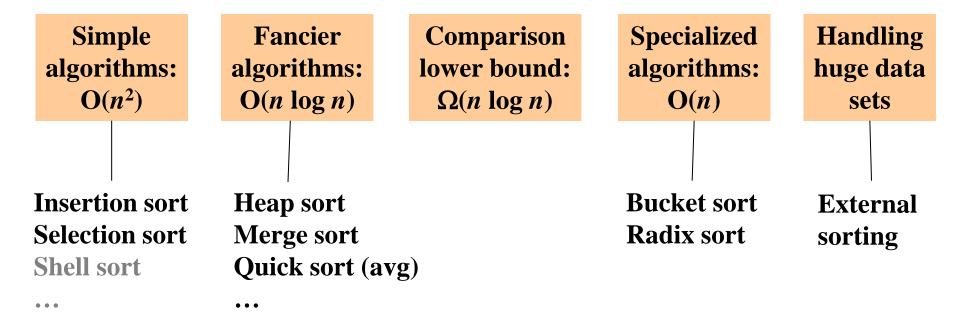
Announcements

- Project 2 Phase A due Wed at 11pm
 - Clarifications posted, check Msg board, email cse332-staff
 - Office Hours today after class
- (No homework due Friday)
- Midterm Monday May 6th during lecture, info about midterm posted soon, review in section on Thurs
- Homework 4 due Friday May 10th at the BEGINNING of lecture

Today

- Sorting
 - Comparison sorting
 - Beyond comparison sorting

The Big Picture



How fast can we sort?

- Heapsort & mergesort have O(n log n) worst-case running time
- Quicksort has O(n log n) average-case running times
- These bounds are all tight, actually ⊕(n log n)
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A Different View of Sorting

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many <u>permutations</u> (possible orderings) of the elements?
- Example, *n*=3,

A Different View of Sorting

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many <u>permutations</u> (possible orderings) of the elements?
- Example, n=3, six possibilities
 a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[0]<a[0]<a[1] a[2]<a[0]<a[0]
- In general, n choices for least element, then n-1 for next, then n-2 for next, ...
 - n(n-1)(n-2)...(2)(1) = n! possible orderings

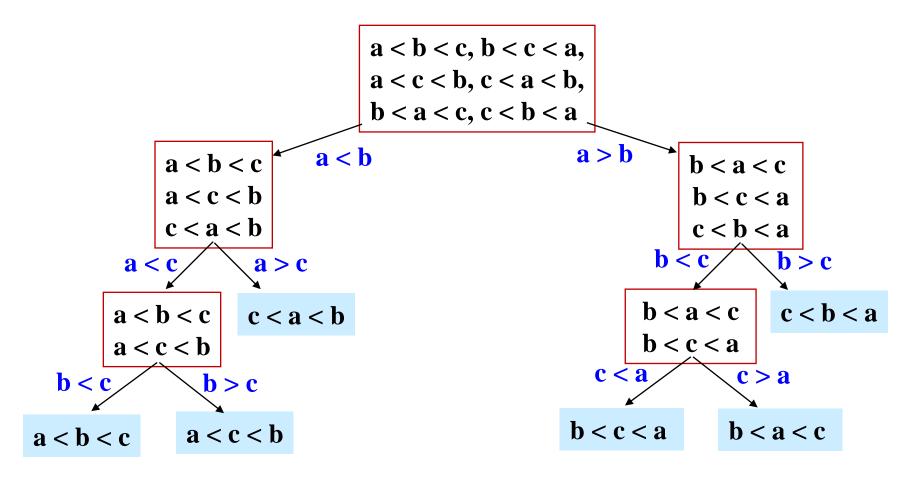
Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison, eliminating some possiblities
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility

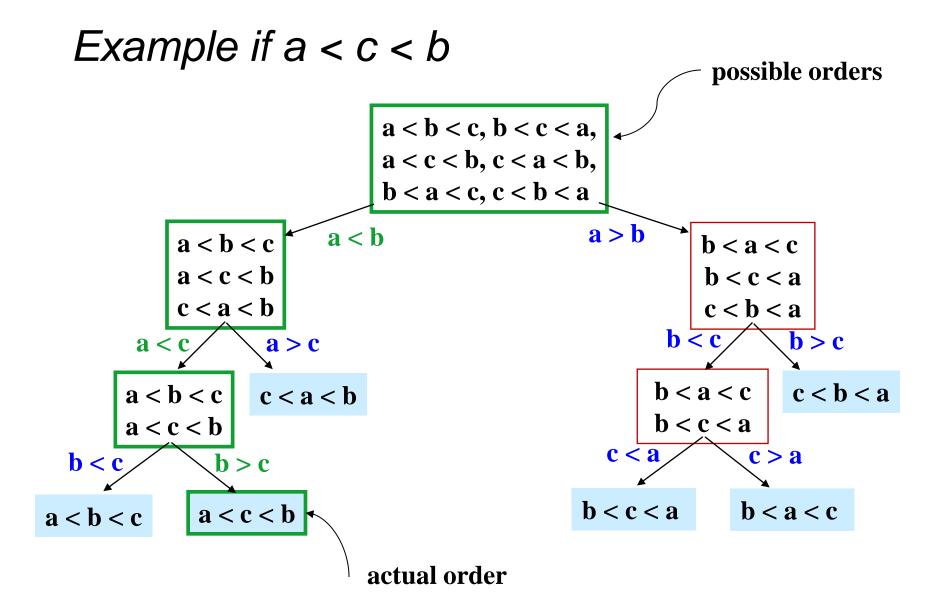
Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison "is a < b?"
 - Can use the result to decide what second comparison to do
 - Etc.: comparison k can be chosen based on first k-1 results
- Can represent this process as a decision tree
 - Nodes contain "set of remaining possibilities"
 - At root, anything is possible; no option eliminated
 - Edges are "answers from a comparison"
 - The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

One Decision Tree for n=3



- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree



What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn't ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will <u>at best</u> correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
 - Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n! leaves

- Turns out average-case is same asymptotically
- A comparison sort could be worse than this height, but it cannot be better
- Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height $\Omega(n \log n)$

- That is, n log n is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is Ω ($n \log n$)

This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!

Lower bound on Height

 A binary tree of height h has at most how many leaves?

L <

• A binary tree with L leaves has height at least:

h ≥ _____

- The decision tree has how many leaves:
- So the decision tree has height:

h ≥ _____

Lower bound on Height

 A binary tree of height h has at most how many leaves?

```
L \leq 2^h
```

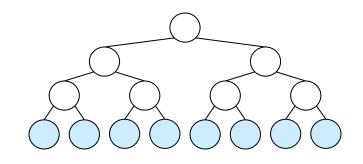
A binary tree with L leaves has height at least:

```
h \geq \log_2 L
```

- The decision tree has how many leaves: N!
- So the decision tree has height:

$$h \geq \log_2 N!$$

Lower bound on height



- The height of a binary tree with L leaves is at least log₂ L
- So the height of our decision tree, h:

```
h \ge \log_2(n!) property of binary trees

= \log_2(n^*(n-1)^*(n-2)...(2)(1)) definition of factorial

= \log_2 n + \log_2(n-1) + ... + \log_2 1 property of logarithms

\ge \log_2 n + \log_2(n-1) + ... + \log_2(n/2) keep first n/2 terms

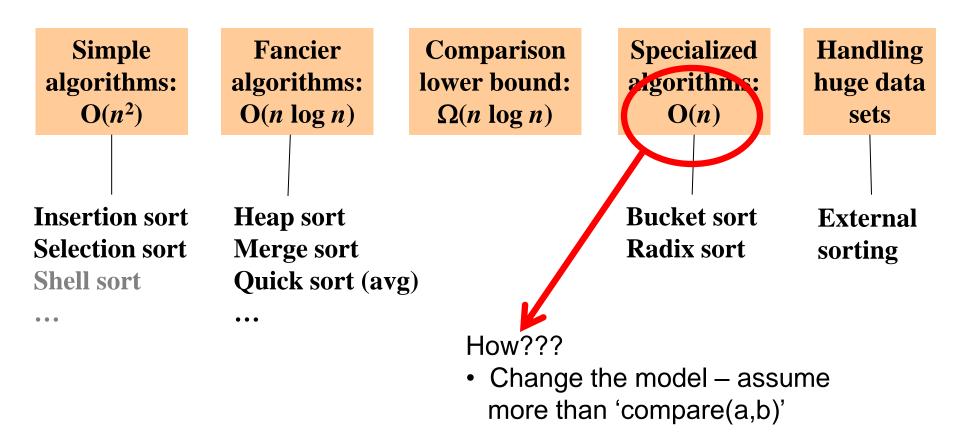
\ge (n/2) \log_2(n/2) each of the n/2 terms left is \ge \log_2(n/2)

= (n/2)(\log_2 n - \log_2 2) property of logarithms

= (1/2)n\log_2 n - (1/2)n arithmetic

"=" \Omega(n \log n)
```

The Big Picture



BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

coun	count array								
1									
2									
3									
4									
5									

• Example:

Input: (5,1,3,4,3,2,1,1,5,4,5)

output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

coun	count array							
1	3							
2	1							
3	2							
4	2							
5	3							

• Example:

What is the running time?

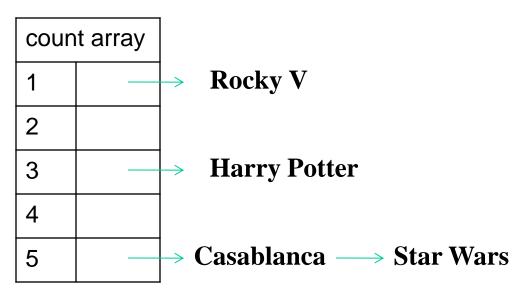
Analyzing bucket sort

- Overall: O(n+K)
 - Linear in n, but also linear in K
 - Ω(n log n) lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than n
 - (We don't spend time doing lots of comparisons of duplicates!)
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear O(K) pass

For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just #'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end O(1) (keep pointer to last element)



- Example: Movie ratings: 1=bad,... 5=excellent
- Input=
 - 5: Casablanca
 - 3: Harry Potter movies

Bucket sort illustrates

a more general trick:

Imagine a heap for a small

range of integer priorities

- 1: Rocky V
- 5: Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars This result is stable; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
- Invariant: After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

First pass:

- bucket sort by ones digit
- Iterate thru and collect into a list
- List is sorted by first digit

Order now:7

Example

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Radix = 10

0	1	2	3	4	5	6	7	8	9				
3 9		721	537 38	143		67	478						

Second pass:

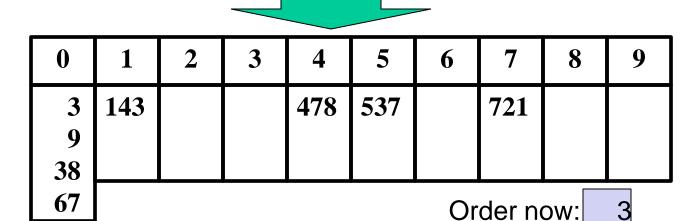
stable bucket sort by tens digit

If we chop off the 100's place, these #s are sorted

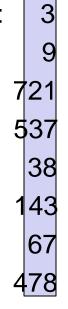
Example

0	1	2	3	4	5	6	7	8	9
3 9		721	537 38	143		67	478		

Radix = 10



Order was:



Third pass:

stable bucket sort by 100s digit

Only 3 digits: We're done!

Student Activity

RadixSort

• Input:126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

0	1	2	3	4	5	6	7	8	9

BucketSort on next-higher digit:

0	1	2	3	4	5	6	7	8	9

BucketSort on msd:

0	1	2	3	4	5	6	7	8	9

Analysis of Radix Sort

Performance depends on:

- Input size: *n*
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
 - e.g. Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: _____
 - Each pass is a Bucket Sort
- Total work is _____
 - We do 'P' passes, each of which is a Bucket Sort

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
 - e.g. Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: O(B+n)
 - Each pass is a Bucket Sort
- Total work is O(P(B+n))
 - We do 'P' passes, each of which is a Bucket Sort

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Approximate run-time: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations plus P and B
 - And radix sort can have poor locality properties
- Not really practical for many classes of keys
 - Strings: Lots of buckets

Recap: Features of Sorting Algorithms

In-place

Sorted items occupy the same space as the original items.
 (No copying required, only O(1) extra space if any.)

Stable

 Items in input with the same value end up in the same order as when they began.

Examples:

- Merge Sort not in place, stable
- Quick Sort in place, not stable

Sorting massive data: External Sorting

Need sorting algorithms that **minimize disk/tape access** time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples

2/06/2013

Sorting Summary

- Simple O(n²) sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for "below a cut-off" to help divide-and-conquer sorts
- *O*(*n* **log** *n*) sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- Ω ($n \log n$) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!