CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Ruth Anderson

Spring 2013

Announcements

- Project 1 posted soon
- Section materials on Eclipse will be very useful if you have never used it
- (Could also start in a different environment if necessary)
- Section materials on generics will be very useful for Phase B
- Homework 1 coming soon (due next Friday)
- Bring info sheet to section tomorrow or lecture on Friday
- Fill out catalyst survey by Thursday evening

Today

- Finish discussing queues
- Review math essential to algorithm analysis
- Proof by induction
- Bit patterns
- Powers of 2
- Exponents and logarithms
- Begin analyzing algorithms
- Using asymptotic analysis (continue next time)

Mathematical induction

Suppose $P(n)$ is some predicate (involving integer n)

- Example: $\quad n \geq n / 2+1 \quad$ (for all $n \geq 2$)

To prove $P(n)$ for all integers $n \geq c$, it suffices to prove

1. $P(c)$ - called the "basis" or "base case"
2. If $P(k)$ then $P(k+1)$ - called the "induction step" or "inductive case"

We will use induction:
To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is (Our " n " will be the data structure or input size.)
$P(n)=$ " the sum of the first n powers of $2\left(\right.$ starting at $\left.2^{0}\right)$ is $2^{n}-1 "$

Inductive Proof Example

Theorem: $P(n)$ holds for all $n \geq 1$
Proof: By induction on n

- Base case, $n=1$: Sum of first power of 2 is 2^{0}, which equals 1 . And for $n=1,2^{n}-1$ equals 1 .
- Inductive case:
- Inductive hypothesis: Assume the sum of the first k powers of 2 is $2^{\mathrm{k}}-1$
- Show, given the hypothesis, that the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$
From our inductive hypothesis we know:

$$
1+2+4+\ldots+2^{k-1}=2^{k}-1
$$

Add the next power of 2 to both sides...

$$
1+2+4+\ldots+2^{k-1}+2^{k}=2^{k}-1+2^{k}
$$

We have what we want on the left; massage the right a bit

$$
1+2+4+\ldots+2^{k-1}+2^{k}=2\left(2^{k}\right)-1=2^{k+1}-1
$$

Note for homework

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

- What you're trying to prove
- The base case
- The inductive case
- The inductive hypothesis
- In many inductive proofs, you'll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above

N bits can represent how many things?

Patterns
\# of patterns
1

2

Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2^{n} distinct things
- For example, the numbers 0 through $2^{n}-1$
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is $2^{63}-1$

Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with $250-300$ bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Logarithms and Exponents

- Since so much is binary in CS, log almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Logarithms and Exponents

Logarithms and Exponents

Logarithms and Exponents

Properties of logarithms

- $\log (A * B)=\log A+\log B$
- So $\log \left(\mathbf{N}^{\mathrm{k}}\right)=\mathrm{k} \log \mathrm{N}$
- $\log (A / B)=\log A-\log B$
- $\mathbf{x}=\log _{2} 2^{x}$
- $\log (\log \mathbf{x})$ is written $\log \log \mathbf{x}$
- Grows as slowly as $2^{2^{y}}$ grows fast
- Ex:

$$
\log _{2} \log _{2} \text { 4billion } \sim \log _{2} \log _{2} 2^{32}=\log _{2} 32=5
$$

- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log \mathbf{x}$ for all $\mathbf{x}>2$

Log base doesn't matter (much)

"Any base $B \log$ is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} \times=3.22 \log _{10} \times$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base A to base B:
$\log _{\mathrm{B}} \mathbf{x}=\left(\log _{\mathrm{A}} \mathrm{x}\right) /\left(\log _{\mathrm{A}} \mathrm{B}\right)$

Algorithm Analysis

As the "size" of an algorithm's input grows
(integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care about "which curve we are like"

Separate issue: Algorithm correctness - does it produce the right answer for all inputs

- Usually more important, naturally

Example

- What does this pseudocode return?

```
x := 0;
for i=1 to N do
        for j=1 to i do
        x := x + 3;
return x;
```

- Correctness: For any $\mathrm{N} \geq 0$, it returns...

Example

- What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
    return x;
```

- Correctness: For any $\mathrm{N} \geq 0$, it returns $3 \mathrm{~N}(\mathrm{~N}+1) / 2$
- Proof: By induction on n
- $P(n)=$ after outer for-loop executes n times, \mathbf{x} holds $3 n(n+1) / 2$
- Base: $\mathrm{n}=0$, returns 0
- Inductive: From $P(k), \mathbf{x}$ holds $3 k(k+1) / 2$ after k iterations. Next iteration adds $3(k+1)$, for total of $3 k(k+1) / 2+3(k+1)$ $=(3 k(k+1)+6(k+1)) / 2=(k+1)(3 k+6) / 2=3(k+1)(k+2) / 2$

Example

- How long does this pseudocode run?

$$
\begin{aligned}
& x:=0 ; \\
& \text { for } i=1 \text { to } N \text { do } \\
& \quad \text { for } j=1 \text { to } i \text { do } \\
& \quad x:=x+3 ; \\
& \text { return } x ;
\end{aligned}
$$

- Running time: For any $\mathrm{N} \geq 0$,
- Assignments, additions, returns take "1 unit time"
- Loops take the sum of the time for their iterations
- So: $2+2^{*}$ (number of times inner loop runs)
- And how many times is that?

Example

- How long does this pseudocode run?

```
x := 0;
    for i=1 to N do
        for j=1 to i do
        x := x + 3;
    return x;
```

- How many times does the inner loop run?

Example

- How long does this pseudocode run?

```
x := 0;
for i=1 to N do
        for j=1 to i do
        x := x + 3;
    return x;
```

- The total number of loop iterations is $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$
- This is a very common loop structure, worth memorizing
- This is proportional to N^{2}, and we say $O\left(\mathrm{~N}^{2}\right)$, "big-Oh of"
- For large enough N , the N and constant terms are irrelevant, as are the first assignment and return
- See plot... $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$ vs. just $\mathrm{N}^{2} / 2$

Lower-order terms don't matter

$N^{*}(N+1) / 2$ vs. just $\mathrm{N}^{2} / 2$

Geometric interpretation

$$
\begin{aligned}
& \sum_{i=1}^{N} i=N^{*} N / 2+N / 2 \\
& \text { for } i=1 \text { to } N \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& / / / \text { small work }
\end{aligned}
$$

- Area of square: $\mathrm{N}^{*} \mathrm{~N}$
- Area of lower triangle of square: $\mathrm{N}^{\star} \mathrm{N} / 2$
- Extra area from squares crossing the diagonal: $\mathrm{N}^{*} 1 / 2$
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size n (here loop bound):

$$
T(n)=n+T(n-1)
$$

(and $T(0)=2$ ish, but usually implicit that $T(0)$ is some constant)

- Any algorithm with running time described by this formula is $O\left(n^{2}\right)$
- "Big-Oh" notation also ignores the constant factor on the highorder term, so $3 \mathrm{~N}^{2}$ and $17 \mathrm{~N}^{2}$ and ($1 / 1000$) N^{2} are all $O\left(\mathrm{~N}^{2}\right)$
- As N grows large enough, no smaller term matters
- Next time: Many more examples + formal definitions

Big-O: Common Names

O(1)
$O(\log n) \quad$ logarithmic
$O(n)$
$\mathrm{O}(\mathrm{n} \log n)$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$O\left(n^{k}\right)$
$O\left(k^{n}\right)$
linear
"n log $n "$
quadratic
cubic
constant (same as $O(k)$ for constant k)
polynomial (where is k is an constant)
exponential (where k is any constant >1)
"exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

