

CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis

Ruth Anderson Spring 2013

Announcements

- Project 1 posted soon
 - Section materials on Eclipse will be very useful if you have never used it
 - (Could also start in a different environment if necessary)
 - Section materials on generics will be very useful for Phase B
- Homework 1 coming soon (due next Friday)
- Bring info sheet to section tomorrow or lecture on Friday
- Fill out catalyst survey by Thursday evening

Today

- Finish discussing queues
- Review math essential to algorithm analysis
 - Proof by induction
 - Bit patterns
 - Powers of 2
 - Exponents and logarithms
- Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)

Mathematical induction

Suppose *P*(*n*) is some predicate (involving integer *n*)

- Example: $n \ge n/2 + 1$ (for all $n \ge 2$)

To prove P(n) for all integers $n \ge c$, it suffices to prove

- 1. P(c) called the "basis" or "base case"
- 2. If P(k) then P(k+1) called the "induction step" or "inductive case"

We will use induction:

To show an algorithm is correct or has a certain running time *no matter how big a data structure or input value is* (Our "*n*" will be the data structure or input size.)

P(n) = "the sum of the first *n* powers of 2 (starting at 2⁰) is 2ⁿ-1 "

Inductive Proof Example

Theorem: P(n) holds for all $n \ge 1$

Proof: By induction on *n*

- Base case, n=1: Sum of first power of 2 is 2⁰, which equals 1.
 And for n=1, 2ⁿ-1 equals 1.
- Inductive case:
 - Inductive hypothesis: Assume the sum of the first k powers of 2 is 2^k-1
 - Show, given the hypothesis, that the sum of the first (k+1) powers of 2 is $2^{k+1}-1$

From our inductive hypothesis we know:

 $1 + 2 + 4 + \dots + 2^{k-1} = 2^k - 1$

Add the next power of 2 to both sides...

 $1+2+4+\ldots+2^{k-1}+2^k=2^k-1+2^k$

We have what we want on the left; massage the right a bit $1+2+4+...+2^{k-1}+2^k = 2(2^k)-1 = 2^{k+1}-1$

Note for homework

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

- What you're trying to prove
- The base case
- The inductive case
- The inductive hypothesis
 - In many inductive proofs, you'll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above

N bits can represent how many things?

<u># Bits</u> Patterns

of patterns

2

1

4/03/2013

Powers of 2

- A bit is 0 or 1
- A sequence of *n* bits can represent 2ⁿ distinct things
 For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2⁶³-1

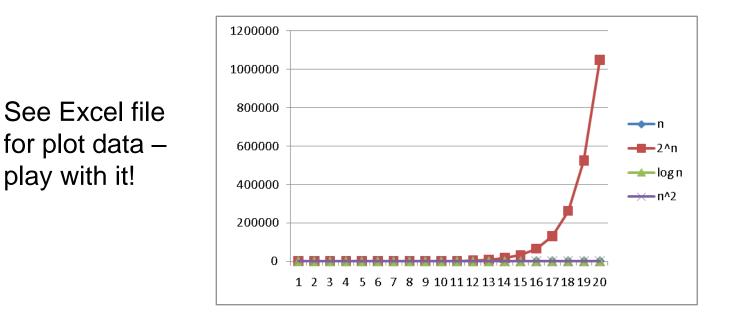
Therefore

Could give a unique id to...

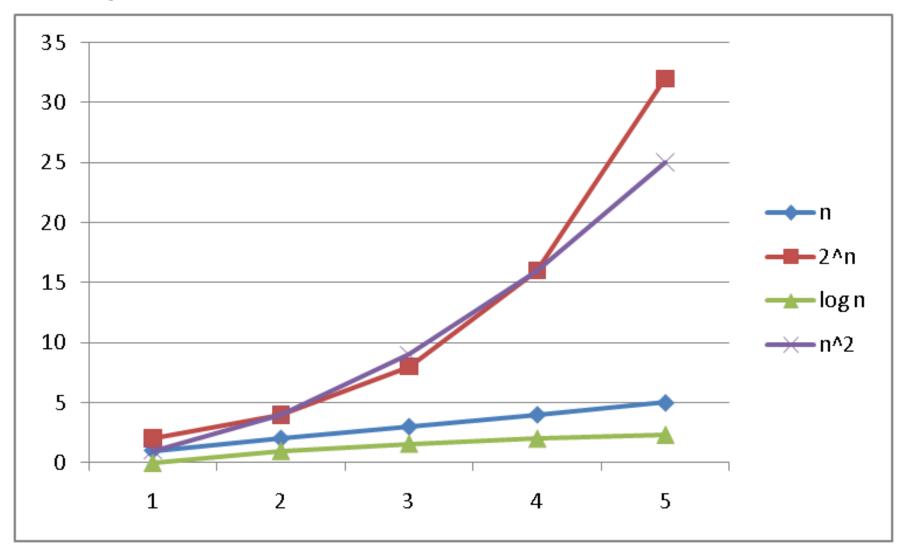
- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

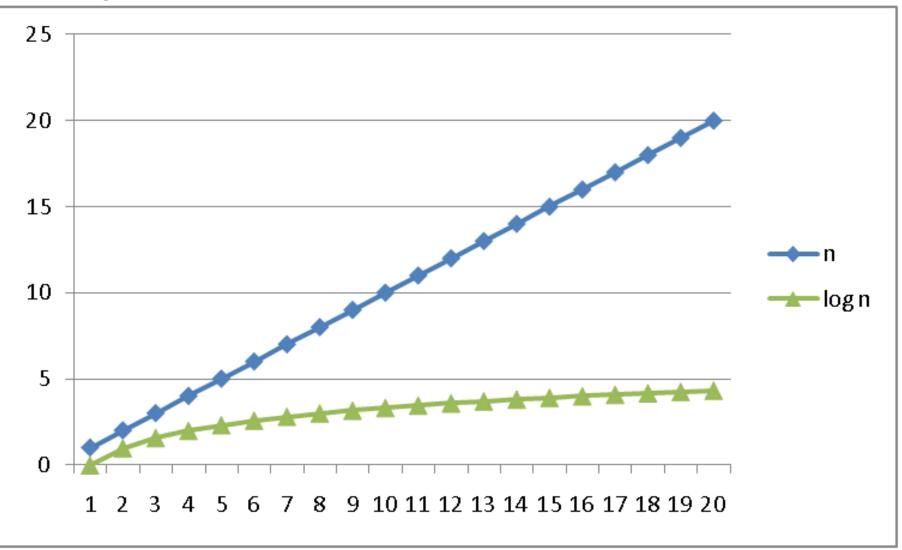
So if a password is 128 bits long and randomly generated, do you think you could guess it?

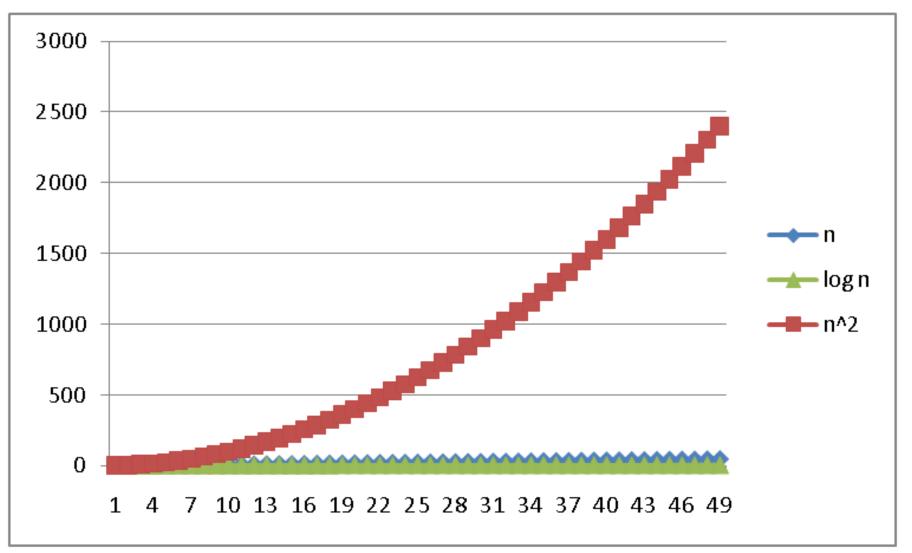
- Since so much is binary in CS, log almost always means log₂ ۲
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$ ٠
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly ٠



4/03/2013







Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So $\log(N^k) = k \log N$
- $\log(A/B) = \log A \log B$
- $\cdot \mathbf{x} = \log_2 2^x$
- log(log x) is written log log x
 - Grows as slowly as $2^{2^{y}}$ grows fast
 - Ex: $\log_2 \log_2 4billion \sim \log_2 \log_2 2^{32} = \log_2 32 = 5$
- (log x) (log x) is written log^2x

- It is greater than $\log x$ for all x > 2

Log base doesn't matter (much)

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base A to base B:

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Algorithm Analysis

As the "size" of an algorithm's input grows (integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
 - How much more memory does the algorithm need (space)

Because the curves we saw are so different, we often only care about "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

- Usually more important, naturally

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
  for j=1 to i do
     x := x + 3;
return x;
```

• Correctness: For any $N \ge 0$, it returns...

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
return x;
```

- Correctness: For any $N \ge 0$, it returns 3N(N+1)/2
- Proof: By induction on *n*
 - P(n) = after outer for-loop executes *n* times, **x** holds 3n(n+1)/2
 - Base: n=0, returns 0
 - Inductive: From P(k), **x** holds 3k(k+1)/2 after k iterations. Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)= (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
     x := x + 3;
return x;
```

- Running time: For any $N \ge 0$,
 - Assignments, additions, returns take "1 unit time"
 - Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)
 - And how many times is that?

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

• How many times does the inner loop run?

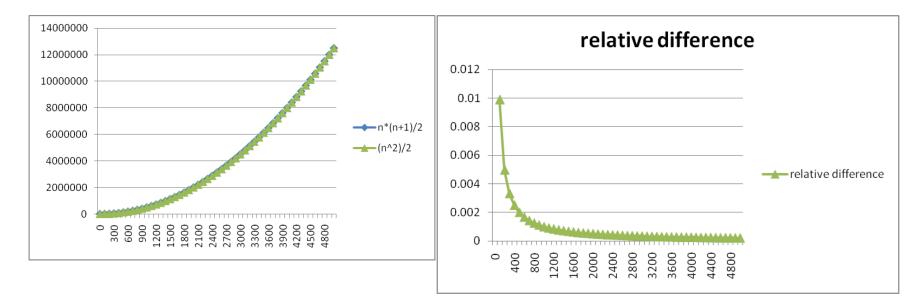
• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

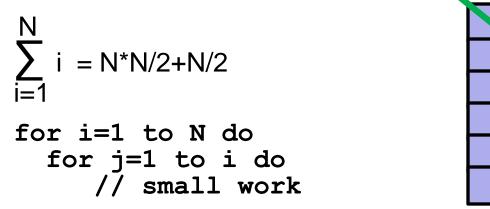
- The total number of loop iterations is N*(N+1)/2
 - This is a very common loop structure, worth memorizing
 - This is proportional to N^2 , and we say $O(N^2)$, "big-Oh of"
 - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

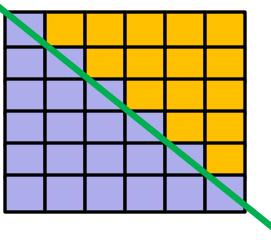
Lower-order terms don't matter

$N^{*}(N+1)/2$ vs. just $N^{2}/2$



Geometric interpretation





- Area of square: N*N
- Area of lower triangle of square: N*N/2
- Extra area from squares crossing the diagonal: N*1/2
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size *n* (here loop bound):
 T(*n*) = *n* + *T*(*n*-1)
 (and *T*(0) = 2ish, but usually implicit that *T*(0) is some constant)
- Any algorithm with running time described by this formula is $O(n^2)$
- "Big-Oh" notation also ignores the constant factor on the highorder term, so 3N² and 17N² and (1/1000) N² are all O(N²)
 - As N grows large enough, no smaller term matters
 - Next time: Many more examples + formal definitions

Big-O: Common Names

O(1)	constant (same as <i>O</i> (<i>k</i>) for constant <i>k</i>)
0(log <i>n</i>)	logarithmic
<i>O</i> (<i>n</i>)	linear
O(n log n)	"n log <i>n</i> "
O(<i>n</i> ²)	quadratic
O(<i>n</i> ³)	cubic
<i>O</i> (<i>n</i> ^k)	polynomial (where is <i>k</i> is an constant)
<i>O</i> (<i>k</i> ⁿ)	exponential (where k is any constant > 1)

"exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"