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CSE 332 Data Abstractions, Spring 2013 

Homework 8 
Due: Friday, June 7, 2013 at the BEGINNING of lecture. Your work should be readable as well as 

correct. Homework Eight has two terrific questions!! Please write your section at the top of your 

homework. 
 

 

Problem 1. Simple Concurrency with B-Trees 
 

Note: Real databases and file systems use very fancy fine-grained synchronization for B-Trees such as 

“hand-over-hand locking” (which we did not discuss), but this problem considers some relatively simpler 

approaches. 

 

Suppose we have a B Tree supporting operations insert and lookup (deletion is NOT a supported 

operation on this particular B Tree).  A simple way to synchronize threads accessing the tree would be to 

have one lock for the entire tree that both operations acquire/release. 

 

(a) Suppose instead we have one lock per node in the tree.  Each operation acquires the locks along 

the path to the leaf it needs and then at the end releases all these locks. Explain why this allegedly 

more fine-grained approach provides absolutely no benefit. 

(b) Now suppose we have one readers/writer lock per node and lookup acquires a read lock for each 

node it encounters whereas insert acquires a write lock for each node it encounters.  Assume that 

the same policy from part (a) is followed in that a thread will only release all of its locks when it 

is done with its operation. How does this provide more concurrent access than the approach in 

part (a)?  Is it any better than having one readers/writer lock for the whole tree (explain)? 

(c) Now suppose we modify the approach in part (b) so that insert acquires a write lock only for the 

leaf node (and read locks for other nodes it encounters).  How would this approach increase 

concurrent access?  When would this be incorrect?  Explain how to fix this approach without 

changing the asymptotic complexity of insert by detecting when it is incorrect and in (only) those 

cases, starting the insert over using the approach in part (b) for that insert.  Why would reverting 

to the approach in part (b) be fairly rare? 

 

Problem 2. Minimum Spanning Trees 

 
(a) Weiss, problem 9.15(a). For Prim’s algorithm, start with vertex A, show the resulting table (see 

Figure 9.57 of the 3
rd

 edition as an example, which is Figure 9.55 in the 2
nd

 edition), and indicate 

the order in which vertices are added.  For Kruskal’s algorithm, produce a table, similar to Figure 

9.58 in the 3
rd

 edition, which is Figure 9.56 in the 2
nd

 edition. Ties may be broken arbitrarily. 

(b) Weiss, problem 9.15(b). Is this MST unique? Why? Be specific in your answer. If no, show 

another MST, if yes, explain why. 

 

 


