

 Page 1 of 2

CSE 332 Data Abstractions, Spring 2013

Homework 6

Due: Friday, May 24, 2013 at 2pm via catalyst dropbox. You will want to download the bundle of code

skeletons posted on the homework web page that goes with this homework.

Problem 1: Forkjoin Parallelism: IsOver
Write a parallel fork-join algorithm in Java using the ForkJoin Framework to determine if any integer in a

given array is over the provided value. Your algorithm should have work O(n) and span O(log n) where n

is the length of the array. For example, if arr is {21,17,35,8,17,1} then isOver(21,arr) is true

and isOver(35,arr) is false. You can assume that: arr will always contain at least one element. You

may include a sequential cut-off or not – your choice.

public static boolean isOver(int val, int[] arr)

We have provided a test harness TestProblem1.java that your code should work with (note: it only

contains a couple of tests). Please write any additional code (including additional classes) that you need to

solve the problem. You may find it useful to look at the code we provided for Problem 2, examples

from section, and Introduction to the ForkJoin Framework (JSR 166) to help you get started.

Problem 2: Forkjoin Parallelism: Longest Sequence
Consider the problem of finding the longest sequence of some number in an array of numbers:

getLongestSequence(i,arr) returns the longest number of consecutive i in arr. For example, if arr is

{2,17,17,8,17,17,17,0,17,1} then getLongestSequence(17,arr) is 3 and

getLongestSequence(9,arr) is 0. You can assume that: arr will always contain at least one element.

a) Write a parallel fork-join algorithm in Java using the ForkJoin Framework for

getLongestSequence. Your algorithm should have work O(n) and span O(log n) where n is the

length of the array. Do not employ a sequential cut-off: your base case should process an array range

containing one element. We have provided 3 files to use for this: TestProblem2.java,

LongestSequence.java, and Results.java. If you would prefer to solve the problem in a

different manner, say using a RecursiveAction or by modifying or not using the Result class, that

will be fine. Just be sure that your method has this signature and works as specified above:

 public static int getLongestSequence(int i, int[] arr)

b) Modify your solution to part (a) to use a sequential cut-off. Thus your code will need to show what

you would do below this cut-off. Name this new method as follows and write a new class called

LongestSequenceCutOff:

public static int getLongestSequenceCutOff(int i, int[] arr)

c) ANSWER THIS QUESTION AS A COMMENT INSIDE OF LongestSequenceCutOff.java file:

In general, how does having using a sequential cut-off make code more efficient?

TURN PAGE OVER FOR THE LAST PROBLEM

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html

 Page 2 of 2

**Did you remember to answer Problem 2, Part c??

Problem 3: Forkjoin Parallelism: Leftmost Occurrence of Substring
Consider the problem of finding the leftmost occurrence of a sequence of characters in an array of

characters, returning the index of the leftmost occurrence or -1 if there is none. For example, if the

characters stored in the array arr1 are: cse332, and the characters stored in the array arr2 are:

Dudecse4ocse332momcse332Rox, then getLeftMostIndex(arr1, arr2) is 9.

Write a parallel fork-join algorithm in Java using the ForkJoin Framework for getLeftMostIndex. Your

code should be callable via the method signature listed below. You may assume that arr1 (the sequence

you are searching for) will be at most 6 characters in length (you do not have to check for this). You

should include a sequential cut-off (pick one that is large-ish, say 100). You can assume that: arr1 and

arr2 will always contain at least one element

 public static int getLeftMostIndex(char[] arr1, char[] arr2)

Hint: Your solution will be much simplified if you solve slightly overlapping subproblems.

Tip: You may find it useful to convert Strings to arrays of characters using toCharArray():

 char[] arr = "Dudecse4ocse332momcse332Rox".toCharArray();

**Really, did you remember to answer Problem 2, Part c??

