
CSE 332 Data Abstractions, Spring 2013
Homework 2

Due: Friday, April 19, 2013 at the BEGINNING of lecture. Your work should be readable
as well as correct. You should refer to the written homework guidelines on the course website
for a reminder about what is acceptable pseudocode. This assignment has 3, Whoa!! THREE
questions! Have fun!

Problem 1. Binary Min-Heaps

This problem will give you some practice with the basic operations on binary min heaps. You
are welcome to show more intermediate trees or arrays than the numbers listed below if you
like.

(a) Starting with an empty binary min heap, show the result of inserting, in the following
order, 13, 9, 3, 8, 5, 6, 14, 1, 12, 10, and 2, one at a time (using percolate up each time),
into the heap. Be sure to draw the result after every insertion. By show here we mean
draw the resulting binary tree with the values at “each node.” In addition, give the array
representation of your final answer. We expect 11 trees and 1 array as your answer.

(b) Instead of inserting the elements in part (a) into the heap one at a time, suppose that
you use Floyd’s algorithm. Show the resulting binary min heap tree. (It would help if
you showed the intermediate trees so if there are any bugs in your solution we will be
better able to assign partial credit, but this is not required). In addition, give the array
representation of your final answer. We expect 1 tree and 1 array as your answer.

(c) Now perform two deleteMin operations on the binary min heap you constructed in part
(b). Show the binary min heaps that result from these successive deletions (“draw the
resulting binary tree with values at each node”). Be sure to draw the result after every
deletion. In addition, give the array representation of your final answer. We expect 2
trees and 1 array as your answer.

Problem 2. Alternate remove() Algorithm for Heaps

As discussed in class, one way to remove an object from a heap is to decrease its priority value
to negative infinity, percolate it up to the root of the heap, and then call deleteMin().

An alternative way to remove an object is to simply remove it from the heap, thus creating
a hole, and then repair the heap. We want you to implement this alternative way for this
problem.

(a) Write pseudocode for an algorithm that will perform the remove operation according to
the alternative approach described above. Your pseudocode should implement the method
call:

void remove(int index)

where index is the index into the heap array for the object to be removed. Your pseu-
docode can make calls to the following methods described in lecture: insert(), deleteMin(),
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percolateUp(), and percolateDown(). Like in lecture, you may assume that objects are
just integer priority values (we will ignore the data associated with the priorities).

(b) What is the worst case complexity of the algorithm you wrote in part (a)? Give your
answer in big-O.

Problem 3. d-Heap Arithmetic

Binary heaps implemented using an array have the nice property of finding children and
parents of a node using only multiplication and division by 2 and incrementing by 1. This
arithmetic is often very fast on most computers, especially the multiplication and division by
2 since these correspond to simple bitshift operations. In d-heaps, the arithmetic is also fairly
straightforward, but is no longer necessarily as fast. In this problem you will figure out how the
arithmetic works in those heaps. In case the general idea is not clear, d-Heaps are discussed in
section 6.5 of Weiss.

(a) We will begin with considering a 3-heap (a heap where each node has ≤ 3 children. If a
3-heap is stored as an array, for an entry located at index i, what are the indices of its
parent and its children? You may find it convenient to place the root at index 0 instead
of 1 to simplify calculations (be sure to specify if you make this change).

Hint: the solution should be very concise. If it is becoming complicated, you might want
to rethink your approach.

(b) Generalize your solution from (a) to work for d-heaps in general. If a d-heap is stored
as an array, for an entry located at index i, what are the indices of its parent and its
children?

(c) For what values of d will these operations be implementable with bit shifts instead of
divisions and multiplications?

(d) If a d-heap has height h, what is the maximum number of nodes that it can contain?
What is the mininum? (again, give an exact expression, NOT something in big-O or
theta etc.) SHOW how you came up with your answer.

(e) If a d-heap has n nodes, what will its height be? (give an exact expression, not something
in big O or theta etc.) SHOW how you came up with your answer.
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