## Section Week 5 Worksheet Solutions

1) Hash Tables. Consider a hash table of size 7 where hashing function is $h($ key $) \% 7$. Insert the following in order, according to the type of hash table below: 14, 10, 17, 4, 12, 13, 24
a. Show a chaining hash table
b. Show a hash table using open addressing with linear probing.
c. Show a hash table using open addressing with quadratic probing.

## SOLUTIONS:

| 0 | 14 |
| :--- | :--- |
| 1 |  |
| 2 |  |
| 3 | $24=>17=>10$ |
| 4 | 4 |
| 5 | 12 |
| 6 | 13 |

5. b)

| 0 | 14 |
| :--- | :--- |
| 1 | 13 |
| 2 | 24 |
| 3 | 10 |
| 4 | 17 |
| 5 | 4 |
| 6 | 12 |

5. c) $14,10,17,4,12,13,24$

| 0 | 14 |
| :--- | :--- |
| 1 | 13 |
| 2 |  |
| 3 | 10 |
| 4 | 17 |
| 5 | 4 |
| 6 | 12 |

We can never place the 24 because the index loops between $4,0,5,5,0,4,3$ and never hits 2.

## 2) AVL Trees

Find one key that we can delete so that the rebalancing phase requires two separate rebalancing acts (either a single- or double-rotation)? Note that a double-rotation counts as one, not two, rebalancing acts.


Solution: We can delete any one of the keys 4, 5, 6, 7 or 20. Even keys 3 and 9 might work, but that depends on the convention for replacing a deleted key with 2 children by its predecessor, not predecessor.
(This wonderful example came from http://cs.nyu.edu/~yap/classes/funAlgo/05f/hw/mid/mid.pdf)
3) (See B-Tree solution from Week 4's worksheet solutions)

