CSE332: Final Exam Review Winter 2011

Final Logistics

- Final on Tuesday, March 15
- Time: 2:30-4:20pm
- No notes, no books; calculators ok (but not really needed)
- Info on website under 'Final Exam'

Topics (short list)

- Sorting
- Graphs
- Parallelization
- Concurrency
- Amortized Analysis not covered
- Material in Midterm NOT covered

Preparing for the Exam

- Homework a good indication of what could be on exam
- Check out previous quarters' exams
- 332 exams from last Spring \& last Summer
- 326 ones differ quite a bit
- Final info site has links
- Make sure you:
- Understand the key concepts
, Can perform the key algorithms

Sorting Topics

- Know
- Insertion \& Selection sorts - O(n^2)
- Heap Sort - O(n log n)
- Merge Sort - O(n log n)
- Quick Sort - O(n log n) on average
- Bucket Sort \& Radix Sort
- Know run-times
- Know how to carry out the sort
- Lower Bound for Comparison Sort
- Cannot do better than $n \log n$
, Won't be ask to give full proof
- But may be asked to use similar techniques
- Be familiar with the ideas

Mergesort example: Merge as we return from recursive calls

We need another array in which to do each merging step; merge
6 results into there, then copy back to original array

Graph Topics

- Graph Basics
, Definition; weights; directedness; degree
, Paths; cycles
- Connectedness (directed vs undirected)
- 'Tree’ in a graph sense
- DAGs
- Graph Representations
- Adjacency List
- Adjacency Matrix
- What each is; how to use it
- Graph Traversals
, Breadth-First
, Depth-First
- What data structures are associated with each?

Graph Topics

- Topological Sort
- Dijkstra's Algorithm
- Doesn't play nice with negative weights
- Minimum Spanning Trees
- Prim's Algorithm
, Kruskal's Algorithm
- Know algorithms
- Know run-times

Dijkstra's Algorithm Overview

- Given a weighted graph and a vertex in the graph (call it A), find the shortest path from A to each other vertex
- Cost of path defined as sum of weights of edges
- Negative edges not allowed
-The algorithm:
-Create a table like this:
- Init A's cost to 0, others infinity (or just '??')

vertex	known?	cost	path
A		0	
B		$? ?$	
C		$? ?$	
D		$? ?$	

-While there are unknown vertices:

- Select unknown vertex w/ lowest cost (A initially)
-Mark it as known
-Update cost and path to all uknown vertices adjacent to that vertex

Parallelism

- Fork-join parallelism
- Know the concept; diff. from making lots of threads
- Be able to write pseudo-code
- Reduce: parallel sum, multiply, min, find, etc.
- Map: bit vector, string length, etc.
- Work \& span definitions
- Speed-up \& parallelism definitions
- Justification for run-time, given tree
- Justification for 'halving' each step
- Amdahl's Law
- Parallel Prefix
- Technique
- Span
- Uses: Parallel prefix sum, filter, etc.
- Parallel Sorting

Parallelism Overview

- We say it takes time T_{P} to complete a task with P processors
- Adding together an array of n elements would take $\mathrm{O}(\mathrm{n})$ time, when done sequentially (that is, $\mathrm{P}=1$)
- Called the work; T_{1}
- If we have 'enough' processors, we can do it much faster; O(logn) time
- Called the span; \mathbf{T}_{∞}

Considering Parallel Run-time

Our fork and join frequently look like this:

-Each node takes O(1) time

- Even the base cases, as they are at the cut-off
-Sequentially, we can do this in $\mathrm{O}(\mathrm{n})$ time; $\mathrm{O}(1)$ for each node, $\sim 3 n$ nodes, if there were no cut-off (linear \# on base case row, halved each row up/down)
-Carrying this out in (perfect) parallel will take the time of the longest branch;
$\sim 2 \operatorname{logn}$, if we halve each time

Some Parallelism Definitions

- Speed-up on \mathbf{P} processors: $\mathbf{T}_{\mathbf{1}} / \mathrm{T}_{\mathbf{P}}$
- We often assume perfect linear speed-up
- That is, $\mathbf{T}_{1} / T_{P}=P ; w / 2 x$ processors, it's twice as fast
- 'Perfect linear speed-up 'usually our goal; hard to get in practice
- Parallelism is the maximum possible speed-up: $\mathrm{T}_{1} / \mathrm{T}_{\infty}$
- At some point, adding processors won't help
- What that point is depends on the span

The ForkJoin Framework Expected Performance

If you write your program well, you can get the following expected performance:

$$
\mathrm{T}_{\mathrm{P}} \leq\left(\mathrm{T}_{1} / \mathrm{P}\right)+O\left(\mathrm{~T}_{\infty}\right)
$$

- $\mathrm{T}_{1} / \mathrm{P}$ for the overall work split between P processors
- $P=4$? Each processor takes $1 / 4$ of the total work
, $O\left(\mathrm{~T}_{\infty}\right)$ for merging results
- Even if $\mathrm{P}=\infty$, then we still need to do $O\left(\mathrm{~T}_{\infty}\right)$ to merge results
- What does it mean??
- We can get decent benefit for adding more processors; effectively linear speed-up at first (expected)
- With a large \# of processors, we're still bounded by T_{∞}; that term becomes dominant

Amdahl's Law

Let the work (time to run on 1 processor) be 1 unit time
Let \mathbf{S} be the portion of the execution that cannot be parallelized

Then:

$$
\mathrm{T}_{1}=\mathrm{S}+(1-\mathrm{S})=1
$$

Then:

$$
T_{P}=S+(1-S) / P
$$

Amdahl's Law: The overall speedup with \mathbf{P} processors is:

$$
T_{1} / T_{P}=1 /(S+(1-S) / P)
$$

And the parallelism (infinite processors) is:

$$
T_{1} / T_{\infty}=1 / S
$$

Parallel Prefix Sum

- Given an array of numbers, compute an array of their running sums in O(logn) span
- Requires 2 passes (each a parallel traversal)
- First is to gather information
- Second figures out output

input	6	4	16	10	16	14	2	8
	output	6	10	26	36	52	66	68
		76						

Parallel Quicksort

2 optimizations:

1. Do the two recursive calls in parallel

- Now recurrence takes the form:

$$
O(n)+1 \mathrm{~T}(n / 2)
$$

So $O(n)$ span
2. Parallelize the partitioning step

- Partitioning normally $O(n)$ time
- Recall that we can use Parallel Prefix Sum to 'filter' with O(logn) span
- Partitioning can be done with 2 filters, so O(logn) span for each partitioning step
These two parallel optimizations bring parallel quicksort to a span of $O\left(\log ^{2} n\right)$

Concurrency

- Race conditions
- Data races
- Synchronizing your code
- Locks, Reentrant locks
- Java’s ‘synchronize’ statement
, Readers/writer locks
, Deadlock
- Issues of critical section size
- Issues of lock scheme granularity - coarse vs fine
- Knowledge of bad interleavings
, Condition variables
- Be able to write pseudo-code for Java threads, locks \& condition variables

Race Conditions

A race condition occurs when the computation result depends on scheduling (how threads are interleaved)

- If T1 and T2 happened to get scheduled in a certain way, things go wrong
- We, as programmers, cannot control scheduling of threads; result is that we need to write programs that work independent of scheduling

Race conditions are bugs that exist only due to concurrency

- No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be seen by another thread; screws up other thread

- Consider a 'partial' insert in a linked list; say, a new node has been added to the end, but 'back' and 'count' haven't been updated

Data Races

- A data race is a specific type of race condition that can happen in 2 ways:
- Two different threads can potentially write a variable at the same time
- One thread can potentially write a variable while another reads the variable
- Simultaneous reads are fine; not a data race, and nothing bad would happen
- 'Potentially' is important; we say the code itself has a data race - it is independent of an actual execution
- Data races are bad, but we can still have a race condition, and bad behavior, when no data races are present

Readers/writer locks

A new synchronization ADT: The readers/writer lock

$$
\begin{aligned}
& 0 \leq \text { writers } \leq 1 \& \& \\
& 0 \leq \text { readers } \& \& \\
& \text { writers } * \text { readers }==0
\end{aligned}
$$

- Idea: Allow any number of readers OR one writer
- This allows more concurrent access (multiple readers)
- A lock's states fall into three categories:
, "not held"
, "held for writing" by one thread
* "held for reading" by one or more threads
- new: make a new lock, initially "not held"
- acquire write: block if currently "held for reading" or "held for writing", else make "held for writing"
, release_write: make "not held"
" acquire_read: block if currently "held for writing", else make/keep "held for reading" and increment readers count
"release_read: decrement readers count, if 0, make "not held"

Deadlock

- As illustrated by the 'The Dining Philosophers' problem
-A deadlock occurs when there are threads T1,
..., Tn such that:
-Each is waiting for a lock held by the next
-Tn is waiting for a resource held by T1
-In other words, there is a cycle of waiting

```
class BankAccount {
```

 synchronized void withdraw(int amt) \{...\}
 synchronized void deposit(int amt) \{...\}
 synchronized void transferTo(int amt, BankAccount a) \{
 this.withdraw (amt);
 a.deposit(amt);
 \}
 \}

Consider simultaneous transfers from account x to account y, and y to x

(NOT ON FINAL!)Amortized Analysis

- To have an Amortized Bound of $\mathrm{O}(\mathrm{f}(\mathrm{n})$):
- There does not exist a series of M operations with runtime worse than O(M*f(n))
- Amortized vs average case
- To prove: prove that no series of operations can do worse than $\mathrm{O}\left(\mathrm{M}^{*} \mathrm{f}(\mathrm{n})\right)$
- To disprove: find a series of operations that's worse

