
CSE332: Final Exam Review
Winter 2011

1

Final Logistics

2

 Final on Tuesday, March 15
 Time: 2:30-4:20pm
 No notes, no books; calculators ok (but not really needed)

 Info on website under ‘Final Exam’

Topics (short list)

3

 Sorting
 Graphs
 Parallelization
 Concurrency

 Amortized Analysis not covered
 Material in Midterm NOT covered

Preparing for the Exam

4

 Homework a good indication of what could be on
exam

 Check out previous quarters’ exams
 332 exams from last Spring & last Summer
 326 ones differ quite a bit
 Final info site has links

 Make sure you:
 Understand the key concepts
 Can perform the key algorithms

Sorting Topics

5

 Know
 Insertion & Selection sorts - O(n^2)
 Heap Sort - O(n log n)
 Merge Sort - O(n log n)
 Quick Sort - O(n log n) on average
 Bucket Sort & Radix Sort

 Know run-times
 Know how to carry out the sort
 Lower Bound for Comparison Sort

 Cannot do better than n log n
 Won’t be ask to give full proof
 But may be asked to use similar techniques
 Be familiar with the ideas

Mergesort example: Merge as we return from
recursive calls

6

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

We need another array in which to do each merging step; merge
results into there, then copy back to original array

Graph Topics

7

 Graph Basics
 Definition; weights; directedness; degree
 Paths; cycles
 Connectedness (directed vs undirected)
 ‘Tree’ in a graph sense
 DAGs

 Graph Representations
 Adjacency List
 Adjacency Matrix
 What each is; how to use it

 Graph Traversals
 Breadth-First
 Depth-First
 What data structures are associated with each?

Graph Topics

8

 Topological Sort
 Dijkstra’s Algorithm

 Doesn’t play nice with negative weights
 Minimum Spanning Trees

 Prim’s Algorithm
 Kruskal’s Algorithm

 Know algorithms
 Know run-times

Dijkstra’s Algorithm Overview

10

•Given a weighted graph and a vertex in the graph (call it A),
find the shortest path from A to each other vertex

•Cost of path defined as sum of weights of edges
•Negative edges not allowed

•The algorithm:
•Create a table like this:
•Init A’s cost to 0, others
infinity (or just ‘??’)
•While there are unknown vertices:

•Select unknown vertex w/ lowest cost (A initially)
•Mark it as known
•Update cost and path to all uknown vertices adjacent
to that vertex

vertex known? cost path
A 0
B ??
C ??
D ??

Parallelism

11

 Fork-join parallelism
 Know the concept; diff. from making lots of threads
 Be able to write pseudo-code
 Reduce: parallel sum, multiply, min, find, etc.
 Map: bit vector, string length, etc.

 Work & span definitions
 Speed-up & parallelism definitions
 Justification for run-time, given tree
 Justification for ‘halving’ each step
 Amdahl’s Law
 Parallel Prefix

 Technique
 Span
 Uses: Parallel prefix sum, filter, etc.

 Parallel Sorting

Parallelism Overview

12

 We say it takes time TP to complete a task with P
processors

 Adding together an array of n elements would take
O(n) time, when done sequentially (that is, P=1)
 Called the work; T1

 If we have ‘enough’ processors, we can do it much
faster; O(logn) time
 Called the span; T∞

+ + + + + + + +
+ + + +

+ +
+

Considering Parallel Run-time

13

Our fork and join frequently look like this:

base cases

divide

combine
results

•Each node takes O(1) time
• Even the base cases, as they are at the cut-off
•Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there
were no cut-off (linear # on base case row, halved each row up/down)
•Carrying this out in (perfect) parallel will take the time of the longest branch;
~2logn, if we halve each time

Some Parallelism Definitions

14

 Speed-up on P processors: T1 / TP

 We often assume perfect linear speed-up
 That is, T1 / TP = P; w/ 2x processors, it’s twice as fast
 ‘Perfect linear speed-up ’usually our goal; hard to get in

practice

 Parallelism is the maximum possible speed-up: T1 / T ∞
 At some point, adding processors won’t help
 What that point is depends on the span

The ForkJoin Framework Expected
Performance

15

If you write your program well, you can get the following
expected performance:

TP ≤ (T1 / P) + O(T ∞)
 T1/P for the overall work split between P processors

 P=4? Each processor takes 1/4 of the total work
 O(T ∞) for merging results

 Even if P=∞, then we still need to do O(T ∞) to merge results
 What does it mean??
 We can get decent benefit for adding more processors;

effectively linear speed-up at first (expected)
 With a large # of processors, we’re still bounded by T ∞; that

term becomes dominant

Amdahl’s Law

16

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that cannot be
parallelized

Then: T1 = S + (1-S) = 1

Then: TP = S + (1-S)/P

Amdahl’s Law: The overall speedup with P processors is:
T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:
T1 / T∞ = 1 / S

Parallel Prefix Sum

17

 Given an array of numbers, compute an array of their
running sums in O(logn) span

 Requires 2 passes (each a parallel traversal)
 First is to gather information
 Second figures out output

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Parallel Prefix Sum

18

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

2 passes:
1.Compute ‘sum’
2.Compute ‘fromtleft’

Parallel Quicksort

19

2 optimizations:
1. Do the two recursive calls in parallel

• Now recurrence takes the form:
O(n) + 1T(n/2)

So O(n) span
2. Parallelize the partitioning step

• Partitioning normally O(n) time
• Recall that we can use Parallel Prefix Sum to ‘filter’ with

O(logn) span
• Partitioning can be done with 2 filters, so O(logn) span for

each partitioning step
These two parallel optimizations bring parallel quicksort to a span of

O(log2n)

Concurrency

20

 Race conditions
 Data races
 Synchronizing your code

 Locks, Reentrant locks
 Java’s ‘synchronize’ statement
 Readers/writer locks
 Deadlock
 Issues of critical section size
 Issues of lock scheme granularity – coarse vs fine

 Knowledge of bad interleavings
 Condition variables
 Be able to write pseudo-code for Java threads, locks &

condition variables

Race Conditions

21

A race condition occurs when the computation result
depends on scheduling (how threads are interleaved)
 If T1 and T2 happened to get scheduled in a certain way,

things go wrong
 We, as programmers, cannot control scheduling of threads;

result is that we need to write programs that work independent
of scheduling

Race conditions are bugs that exist only due to concurrency
 No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be
seen by another thread; screws up other thread
 Consider a ‘partial’ insert in a linked list; say, a new node has

been added to the end, but ‘back’ and ‘count’ haven’t been
updated

Data Races

22

 A data race is a specific type of race condition that
can happen in 2 ways:
 Two different threads can potentially write a variable at

the same time
 One thread can potentially write a variable while another

reads the variable
 Simultaneous reads are fine; not a data race, and nothing

bad would happen
 ‘Potentially’ is important; we say the code itself has a data

race – it is independent of an actual execution
 Data races are bad, but we can still have a race

condition, and bad behavior, when no data races are
present

Readers/writer locks

23

A new synchronization ADT: The readers/writer lock

 Idea: Allow any number of readers OR one writer
 This allows more concurrent access (multiple readers)
 A lock’s states fall into three categories:

 “not held”
 “held for writing” by one thread
 “held for reading” by one or more threads

 new: make a new lock, initially “not held”
 acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”
 release_write: make “not held”
 acquire_read: block if currently “held for writing”, else

make/keep “held for reading” and increment readers count
 release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1 &&
0 ≤ readers &&
writers*readers==0

Deadlock

24

 As illustrated by the ‘The Dining Philosophers’ problem
•A deadlock occurs when there are threads T1,
…, Tn such that:

•Each is waiting for a lock held by the next
•Tn is waiting for a resource held by T1

•In other words, there is a cycle of waiting

class BankAccount {
 …
 synchronized void withdraw(int amt) {…}
 synchronized void deposit(int amt) {…}
 synchronized void transferTo(int amt,BankAccount a){
 this.withdraw(amt);
 a.deposit(amt);
 }
} Consider simultaneous transfers from account x to account

y, and y to x

(NOT ON FINAL!)Amortized Analysis

25

 To have an Amortized Bound of O(f(n)):
 There does not exist a series of M operations with run-

time worse than O(M*f(n))
 Amortized vs average case
 To prove: prove that no series of operations can do

worse than O(M*f(n))
 To disprove: find a series of operations that’s worse

