CSE332: Final Exam Review Winter 2011

1

Final Logistics

Final on Tuesday, March 15

- Time: 2:30-4:20pm
- No notes, no books; calculators ok (but not really needed)
- Info on website under 'Final Exam'

Topics (short list)

- Sorting
- Graphs
- Parallelization
- Concurrency
- Amortized Analysis not covered
- Material in Midterm NOT covered

Preparing for the Exam

- Homework a good indication of what could be on exam
- Check out previous quarters' exams
 - 332 exams from last Spring & last Summer
 - > 326 ones differ quite a bit
 - Final info site has links
- Make sure you:
 - Understand the key concepts
 - Can perform the key algorithms

Sorting Topics

- Know
 - Insertion & Selection sorts O(n^2)
 - Heap Sort O(n log n)
 - Merge Sort O(n log n)
 - Quick Sort O(n log n) on average
 - Bucket Sort & Radix Sort
- Know run-times
- Know how to carry out the sort
- Lower Bound for Comparison Sort
 - Cannot do better than n log n
 - Won't be ask to give full proof
 - But may be asked to use similar techniques
 - Be familiar with the ideas

Mergesort example: Merge as we return from recursive calls

We need another array in which to do each merging step; merge
 results into there, then copy back to original array

Graph Topics

Graph Basics

- Definition; weights; directedness; degree
- Paths; cycles
- Connectedness (directed vs undirected)
- 'Tree' in a graph sense
- DAGs

Graph Representations

- Adjacency List
- Adjacency Matrix
- What each is; how to use it

Graph Traversals

- Breadth-First
- Depth-First
- What data structures are associated with each?

Graph Topics

- Topological Sort
- Dijkstra's Algorithm
 - Doesn't play nice with negative weights
- Minimum Spanning Trees
 - Prim's Algorithm
 - Kruskal's Algorithm
- Know algorithms
- Know run-times

Dijkstra's Algorithm Overview

•Given a weighted graph and a vertex in the graph (call it A), find the shortest path from A to each other vertex

- Cost of path defined as sum of weights of edges
- Negative edges not allowed
- •The algorithm:
 - •Create a table like this:
 - Init A's cost to 0, others infinity (or just '??')

vertex	known?	cost	path
А		0	
В		??	
С		??	
D		??	

•While there are unknown vertices:

- •Select unknown vertex w/ lowest cost (A initially)
- •Mark it as known
- •Update cost and path to all uknown vertices adjacent

▶ 10 to that vertex

Parallelism

Fork-join parallelism

- Know the concept; diff. from making lots of threads
- Be able to write pseudo-code
- Reduce: parallel sum, multiply, min, find, etc.
- Map: bit vector, string length, etc.
- Work & span definitions
- Speed-up & parallelism definitions
- Justification for run-time, given tree
- Justification for 'halving' each step
- Amdahl's Law
- Parallel Prefix
 - Technique
 - Span
 - Uses: Parallel prefix sum, filter, etc.
- Parallel Sorting

Parallelism Overview

- We say it takes time T_P to complete a task with P processors
- Adding together an array of n elements would take O(n) time, when done sequentially (that is, P=1)
 - Called the work; T₁
- If we have 'enough' processors, we can do it much faster; O(logn) time
 - Called the **span**; T_{∞}

Considering Parallel Run-time

Our fork and join frequently look like this:

•Each node takes O(1) time

• Even the base cases, as they are at the cut-off

Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there were no cut-off (linear # on base case row, halved each row up/down)
Carrying this out in (perfect) parallel will take the time of the longest branch; ~2logn, if we halve each time
13

Some Parallelism Definitions

- Speed-up on P processors: T₁ / T_P
- We often assume perfect linear speed-up
 - That is, $T_1 / T_P = P$; w/ 2x processors, it's twice as fast
 - 'Perfect linear speed-up 'usually our goal; hard to get in practice
- **Parallelism** is the maximum possible speed-up: T_1 / T_{∞}
 - At some point, adding processors won't help
 - What that point is depends on the span

The ForkJoin Framework Expected Performance

If you write your program well, you can get the following expected performance:

 $\mathsf{T}_\mathsf{P} \leq (\mathsf{T}_1 / \mathsf{P}) + O(\mathsf{T}_\infty)$

- > T_1/P for the overall work split between P processors
 - P=4? Each processor takes 1/4 of the total work
- $O(T_{\infty})$ for merging results
 - Even if $P=\infty$, then we still need to do $O(T_{\infty})$ to merge results
- What does it mean??
- We can get decent benefit for adding more processors; effectively linear speed-up at first (expected)
- With a large # of processors, we're still bounded by T_∞; that term becomes dominant

Amdahl's Law

Let the *work* (time to run on 1 processor) be 1 unit time

Let **S** be the portion of the execution that **cannot** be parallelized

Then: **T**₁ = **S** + (1-S) = 1

Then: **T**_P = **S** + (1-S)/P

Amdahl's Law: The overall **speedup** with P processors is: $T_1 / T_P = 1 / (S + (1-S)/P)$

And the *parallelism* (infinite processors) is:

$$\mathbf{T}_{1} / \mathbf{T}_{\infty} = \mathbf{1} / \mathbf{S}$$

Parallel Prefix Sum

- Given an array of numbers, compute an array of their running sums in O(logn) span
- Requires 2 passes (each a parallel traversal)
 - First is to gather information
 - Second figures out output

input	6	4	16	10	16	14	2	8
output	6	10	26	36	52	66	68	76

Parallel Quicksort

2 optimizations:

- 1. Do the two recursive calls in parallel
 - Now recurrence takes the form:

O(n) + 1T(n/2)

So O(n) span

- 2. Parallelize the partitioning step
 - Partitioning normally O(n) time
 - Recall that we can use Parallel Prefix Sum to 'filter' with O(logn) span
 - Partitioning can be done with 2 filters, so O(logn) span for each partitioning step

These two parallel optimizations bring parallel quicksort to a span of $O(log^2n)$

Concurrency

- Race conditions
- Data races
- Synchronizing your code
 - Locks, Reentrant locks
 - Java's 'synchronize' statement
 - Readers/writer locks
 - Deadlock
 - Issues of critical section size
 - Issues of lock scheme granularity coarse vs fine
- Knowledge of bad interleavings
- Condition variables
- Be able to write pseudo-code for Java threads, locks & condition variables

Race Conditions

- A race condition occurs when the computation result depends on scheduling (how threads are interleaved)
 - If T1 and T2 happened to get scheduled in a certain way, things go wrong
 - We, as programmers, cannot control scheduling of threads; result is that we need to write programs that work independent of scheduling

Race conditions are bugs that exist only due to concurrency

- No interleaved scheduling with 1 thread
- Typically, problem is that some *intermediate state* can be seen by another thread; screws up other thread
 - Consider a 'partial' insert in a linked list; say, a new node has been added to the end, but 'back' and 'count' haven't been updated

Data Races

- A data race is a specific type of race condition that can happen in 2 ways:
 - Two different threads can *potentially* write a variable at the same time
 - One thread can *potentially* write a variable while another reads the variable
 - Simultaneous reads are fine; not a data race, and nothing bad would happen
 - 'Potentially' is important; we say the code itself has a data race – it is independent of an actual execution
- Data races are bad, but we can still have a race condition, and bad behavior, when no data races are present

Readers/writer locks

A new synchronization ADT: The readers/writer lock

0 ≤ writers ≤ 1 && 0 ≤ readers && writers*readers==0

- Idea: Allow any number of readers OR one writer
- This allows more concurrent access (multiple readers)
- A lock's states fall into three categories:
 - "not held"
 - "held for writing" by one thread
 - "held for reading" by one or more threads
- new: make a new lock, initially "not held"
- acquire_write: block if currently "held for reading" or "held for writing", else make "held for writing"
- release_write: make "not held"
- acquire_read: block if currently "held for writing", else make/keep "held for reading" and increment readers count
- release_read: decrement readers count, if 0, make "not held"

Deadlock

As illustrated by the 'The Dining Philosophers' problem

•A deadlock occurs when there are threads **T1**, ..., **Tn** such that:

•Each is waiting for a lock held by the next

•Tn is waiting for a resource held by T1 In other words, there is a cycle of waiting

class BankAccount {


```
synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
synchronized void transferTo(int amt, BankAccount a) {
  this.withdraw(amt);
  a.deposit(amt);
             Consider simultaneous transfers from account x to account
```

y, and y to x

24

(NOT ON FINAL!) Amortized Analysis

- To have an Amortized Bound of O(f(n)):
 - There does not exist a series of M operations with runtime worse than O(M*f(n))
- Amortized vs average case
- To prove: prove that no series of operations can do worse than O(M*f(n))
- To disprove: find a series of operations that's worse