
CSE332: Final Exam Review
Winter 2011

1

Final Logistics

2

 Final on Tuesday, March 15
 Time: 2:30-4:20pm
 No notes, no books; calculators ok (but not really needed)

 Info on website under ‘Final Exam’

Topics (short list)

3

 Sorting
 Graphs
 Parallelization
 Concurrency

 Amortized Analysis not covered
 Material in Midterm NOT covered

Preparing for the Exam

4

 Homework a good indication of what could be on
exam

 Check out previous quarters’ exams
 332 exams from last Spring & last Summer
 326 ones differ quite a bit
 Final info site has links

 Make sure you:
 Understand the key concepts
 Can perform the key algorithms

Sorting Topics

5

 Know
 Insertion & Selection sorts - O(n^2)
 Heap Sort - O(n log n)
 Merge Sort - O(n log n)
 Quick Sort - O(n log n) on average
 Bucket Sort & Radix Sort

 Know run-times
 Know how to carry out the sort
 Lower Bound for Comparison Sort

 Cannot do better than n log n
 Won’t be ask to give full proof
 But may be asked to use similar techniques
 Be familiar with the ideas

Mergesort example: Merge as we return from
recursive calls

6

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

We need another array in which to do each merging step; merge
results into there, then copy back to original array

Graph Topics

7

 Graph Basics
 Definition; weights; directedness; degree
 Paths; cycles
 Connectedness (directed vs undirected)
 ‘Tree’ in a graph sense
 DAGs

 Graph Representations
 Adjacency List
 Adjacency Matrix
 What each is; how to use it

 Graph Traversals
 Breadth-First
 Depth-First
 What data structures are associated with each?

Graph Topics

8

 Topological Sort
 Dijkstra’s Algorithm

 Doesn’t play nice with negative weights
 Minimum Spanning Trees

 Prim’s Algorithm
 Kruskal’s Algorithm

 Know algorithms
 Know run-times

Dijkstra’s Algorithm Overview

10

•Given a weighted graph and a vertex in the graph (call it A),
find the shortest path from A to each other vertex

•Cost of path defined as sum of weights of edges
•Negative edges not allowed

•The algorithm:
•Create a table like this:
•Init A’s cost to 0, others
infinity (or just ‘??’)
•While there are unknown vertices:

•Select unknown vertex w/ lowest cost (A initially)
•Mark it as known
•Update cost and path to all uknown vertices adjacent
to that vertex

vertex known? cost path
A 0
B ??
C ??
D ??

Parallelism

11

 Fork-join parallelism
 Know the concept; diff. from making lots of threads
 Be able to write pseudo-code
 Reduce: parallel sum, multiply, min, find, etc.
 Map: bit vector, string length, etc.

 Work & span definitions
 Speed-up & parallelism definitions
 Justification for run-time, given tree
 Justification for ‘halving’ each step
 Amdahl’s Law
 Parallel Prefix

 Technique
 Span
 Uses: Parallel prefix sum, filter, etc.

 Parallel Sorting

Parallelism Overview

12

 We say it takes time TP to complete a task with P
processors

 Adding together an array of n elements would take
O(n) time, when done sequentially (that is, P=1)
 Called the work; T1

 If we have ‘enough’ processors, we can do it much
faster; O(logn) time
 Called the span; T∞

+ + + + + + + +
+ + + +

+ +
+

Considering Parallel Run-time

13

Our fork and join frequently look like this:

base cases

divide

combine
results

•Each node takes O(1) time
• Even the base cases, as they are at the cut-off
•Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there
were no cut-off (linear # on base case row, halved each row up/down)
•Carrying this out in (perfect) parallel will take the time of the longest branch;
~2logn, if we halve each time

Some Parallelism Definitions

14

 Speed-up on P processors: T1 / TP

 We often assume perfect linear speed-up
 That is, T1 / TP = P; w/ 2x processors, it’s twice as fast
 ‘Perfect linear speed-up ’usually our goal; hard to get in

practice

 Parallelism is the maximum possible speed-up: T1 / T ∞
 At some point, adding processors won’t help
 What that point is depends on the span

The ForkJoin Framework Expected
Performance

15

If you write your program well, you can get the following
expected performance:

TP ≤ (T1 / P) + O(T ∞)
 T1/P for the overall work split between P processors

 P=4? Each processor takes 1/4 of the total work
 O(T ∞) for merging results

 Even if P=∞, then we still need to do O(T ∞) to merge results
 What does it mean??
 We can get decent benefit for adding more processors;

effectively linear speed-up at first (expected)
 With a large # of processors, we’re still bounded by T ∞; that

term becomes dominant

Amdahl’s Law

16

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that cannot be
parallelized

Then: T1 = S + (1-S) = 1

Then: TP = S + (1-S)/P

Amdahl’s Law: The overall speedup with P processors is:
T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:
T1 / T∞ = 1 / S

Parallel Prefix Sum

17

 Given an array of numbers, compute an array of their
running sums in O(logn) span

 Requires 2 passes (each a parallel traversal)
 First is to gather information
 Second figures out output

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

Parallel Prefix Sum

18

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7.8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36

2 passes:
1.Compute ‘sum’
2.Compute ‘fromtleft’

Parallel Quicksort

19

2 optimizations:
1. Do the two recursive calls in parallel

• Now recurrence takes the form:
O(n) + 1T(n/2)

So O(n) span
2. Parallelize the partitioning step

• Partitioning normally O(n) time
• Recall that we can use Parallel Prefix Sum to ‘filter’ with

O(logn) span
• Partitioning can be done with 2 filters, so O(logn) span for

each partitioning step
These two parallel optimizations bring parallel quicksort to a span of

O(log2n)

Concurrency

20

 Race conditions
 Data races
 Synchronizing your code

 Locks, Reentrant locks
 Java’s ‘synchronize’ statement
 Readers/writer locks
 Deadlock
 Issues of critical section size
 Issues of lock scheme granularity – coarse vs fine

 Knowledge of bad interleavings
 Condition variables
 Be able to write pseudo-code for Java threads, locks &

condition variables

Race Conditions

21

A race condition occurs when the computation result
depends on scheduling (how threads are interleaved)
 If T1 and T2 happened to get scheduled in a certain way,

things go wrong
 We, as programmers, cannot control scheduling of threads;

result is that we need to write programs that work independent
of scheduling

Race conditions are bugs that exist only due to concurrency
 No interleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be
seen by another thread; screws up other thread
 Consider a ‘partial’ insert in a linked list; say, a new node has

been added to the end, but ‘back’ and ‘count’ haven’t been
updated

Data Races

22

 A data race is a specific type of race condition that
can happen in 2 ways:
 Two different threads can potentially write a variable at

the same time
 One thread can potentially write a variable while another

reads the variable
 Simultaneous reads are fine; not a data race, and nothing

bad would happen
 ‘Potentially’ is important; we say the code itself has a data

race – it is independent of an actual execution
 Data races are bad, but we can still have a race

condition, and bad behavior, when no data races are
present

Readers/writer locks

23

A new synchronization ADT: The readers/writer lock

 Idea: Allow any number of readers OR one writer
 This allows more concurrent access (multiple readers)
 A lock’s states fall into three categories:

 “not held”
 “held for writing” by one thread
 “held for reading” by one or more threads

 new: make a new lock, initially “not held”
 acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”
 release_write: make “not held”
 acquire_read: block if currently “held for writing”, else

make/keep “held for reading” and increment readers count
 release_read: decrement readers count, if 0, make “not held”

0 ≤ writers ≤ 1 &&
0 ≤ readers &&
writers*readers==0

Deadlock

24

 As illustrated by the ‘The Dining Philosophers’ problem
•A deadlock occurs when there are threads T1,
…, Tn such that:

•Each is waiting for a lock held by the next
•Tn is waiting for a resource held by T1

•In other words, there is a cycle of waiting

class BankAccount {
 …
 synchronized void withdraw(int amt) {…}
 synchronized void deposit(int amt) {…}
 synchronized void transferTo(int amt,BankAccount a){
 this.withdraw(amt);
 a.deposit(amt);
 }
} Consider simultaneous transfers from account x to account

y, and y to x

(NOT ON FINAL!)Amortized Analysis

25

 To have an Amortized Bound of O(f(n)):
 There does not exist a series of M operations with run-

time worse than O(M*f(n))
 Amortized vs average case
 To prove: prove that no series of operations can do

worse than O(M*f(n))
 To disprove: find a series of operations that’s worse

