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Announcements

• Homework 7 – due Friday March 4th at the BEGINNING of 
lecture!

• Project 3 – the last programming project!
– Version 1 & 2 - Tues March 1, 2011 11PM - (10% of overall grade)

– ALL Code - Tues March 8, 2011 11PM - (65% of overall grade):

– Writeup - Thursday March 10, 2011, 11PM - (25% of overall grade)
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Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know:

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables
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Motivating memory-model issues

Tricky and surprisingly wrong unsynchronized concurrent code
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class C {
private int x = 0;
private int y = 0;

void f () {
x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert (b >= a);

}   
}

First understand why it looks like 
the assertion can’t fail:

• Easy case:  call to g ends before 
any call to f starts

• Easy case: at least one call to f
completes before call to g starts

• If calls to f and g interleave…

Interleavings

There is no interleaving of f and g where the assertion fails

– Proof #1: Exhaustively consider all possible orderings of 
access to shared memory (there are 6)

– Proof #2: If !(b>=a) , then a==1 and b==0 .  But if a==1 , 
then a=y happened after y=1 .  And since programs execute 
in order, b=x happened after a=y and x=1 happened before 
y=1 .  So by transitivity, b==1 .  Contradiction.
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x = 1;

y = 1;

int a = y;

int b = x;

assert (b >= a);

Thread 1: f Thread 2: g

Wrong

However, the code has a data race

– Two actually

– Recall: data race: unsynchronized read/write or write/write of 
same location

If your code has data races, you can’t reason about it with interleavings!

– That’s just the rules of Java (and C, C++, C#, …)

– (Else would slow down all programs just to “help” programs with 
data races, and that’s not a good engineering trade-off)

– So the assertion can fail

Recall Guideline #0: No data races
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Why

For performance reasons, the compiler and the hardware often 
reorder memory operations

– Take a compiler or computer architecture course to learn why
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x = 1;

y = 1;

int a = y;

int b = x;

assert (b >= a);

Thread 1: f Thread 2: g

Of course, you can’t just let them reorder anything they want

• Each thread executes in order after all!
• Consider: x=17; y=x;

The grand compromise

The compiler/hardware will never perform a memory reordering that 
affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering that 
affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can 
forget about all this reordering nonsense: the result will be 
equivalent to some interleaving

Your job: Avoid data races

Compiler/hardware job: Give interleaving (illusion) if you do your job

8

Fixing our example

• Naturally, we can use synchronization to avoid data races

– Then, indeed, the assertion can’t fail
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class C {
private int x = 0;
private int y = 0;
void f () {

synchronized ( this ) { x = 1; }
synchronized ( this ) { y = 1; }

}
void g() {

int a, b;
synchronized ( this ) { a = y; }
synchronized ( this ) { b = x; }
assert (b >= a);

}   
}

A second fix

• Java has volatile fields: accesses don’t count as data races 

• Implementation: slower than regular fields, faster than locks

• Really for experts: avoid them; use standard libraries instead
• And why do you need code like this anyway?
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class C {
private volatile int x = 0;
private volatile int y = 0;
void f () {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert (b >= a);

}   
}

Code that’s wrong

• Here is a more realistic example of code that is wrong
– No guarantee Thread 2 will ever stop (there’s a data race)

– But honestly it will “probably work” despite being wrong
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class C {
boolean stop = false;
void f () {

while (!stop) {
// draw a monster

}
}
void g() {

stop = didUserQuit();
}   

}

Thread 1:  f()

Thread 2:  g()

Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables
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Motivating Deadlock Issues

Consider a method to transfer money between bank accounts 
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class BankAccount {
…
synchronized void withdraw (int amt ) {…}
synchronized void deposit (int amt ) {…}
synchronized void transferTo (int amt,  

BankAccount a) {
this .withdraw(amt);
a.deposit(amt);

}  
}

Notice during call to a.deposit , thread holds 2 locks

– Need to investigate when this may be a problem

The Deadlock
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acquire lock for x
do withdraw from x

block on lock for y

acquire lock for y
do withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

For simplicity, suppose x and y are static fields holding accounts

Thread 2: y.transferTo(1,x)

Ex: The Dining Philosophers
• 5 philosophers go out to dinner together at an Italian restaurant

• Sit at a round table; one fork per setting

• When the spaghetti comes, each philosopher proceeds to grab their 
right fork, then their left fork, then eats

• ‘Locking’ for each fork results in a deadlock
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Deadlock, in general

A deadlock occurs when there are threads T1, …, Tn such that:

• For i=1,..,n-1, Ti is waiting for a resource held by T(i+1)
• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting

– Can formalize as a graph of dependencies with cycles bad

Deadlock avoidance in programming amounts to techniques to 
ensure a cycle can never arise
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Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized

– Exposes intermediate state after withdraw before deposit

– May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing 
transfers between them

– Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire 
locks in the same order…

– Entire program should obey this order to avoid cycles

– Code acquiring only one lock is fine though

17

Ordering locks
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class BankAccount {
…
private int acctNumber ; // must be unique
void transferTo (int amt , BankAccount a) {

if (this.acctNumber < a.acctNumber)
synchronized ( this ) {
synchronized (a) {

this .withdraw(amt);
a.deposit(amt);

}}
else

synchronized (a) {
synchronized ( this ) {

this .withdraw(amt);
a.deposit(amt);

}}
}

}



Another example
From the Java standard library
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class StringBuffer {
private int count ;
private char[] value ;
…
synchronized append (StringBuffer sb ) {

int len = sb.length();
if( this .count + len > this.value.length)

this .expand(…);
sb.getChars(0, len ,this.value,this.count);

}
synchronized getChars(int x , int, y , 

char[] a, int z) {
“copy this .value[x..y] into a starting at z”

}
}

Two problems

Problem #1: The lock for sb is not held between calls to sb.length
and sb.getChars

– So sb could get longer

– Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in 
opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:
– Do not want unique ids on every StringBuffer

– Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc) 

– Up to clients to avoid such situations with own protocols
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Perspective

• Code like account-transfer and string-buffer append are difficult 
to deal with for deadlock

• Easier case: different types of objects 

– Can document a fixed order among types
– Example: “When moving an item from the hashtable to the 

work queue, never try to acquire the queue lock while 
holding the hashtable lock”

• Easier case: objects are in an acyclic structure

– Can use the data structure to determine a fixed order

– Example: “If holding a tree node’s lock, do not acquire other 
tree nodes’ locks unless they are children in the tree”
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Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables
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Reading vs. writing

Recall:

– Multiple concurrent reads of same memory: Not a problem

– Multiple concurrent writes of same memory: Problem

– Multiple concurrent read & write of same memory: Problem

So far:
– If concurrent write/write or read/write might occur, use 

synchronization to ensure one-thread-at-a-time

But:
– This is unnecessarily conservative: we could still allow 

multiple simultaneous readers
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Example

Consider a hashtable with one coarse-grained lock

– So only one thread can perform any operation at a time

– Won’t allow simultaneous reads, even though it’s ok 
conceptually

But suppose:
– There are many simultaneous lookup operations

– insert operations are very rare

– It’d be nice to support multiple reads; we’d do lots of waiting 
otherwise

Note: Important that lookup doesn’t actually mutate shared 
memory, like a move-to-front list operation would
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Readers/writer locks

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:

– “not held”

– “held for writing” by one thread 

– “held for reading” by one or more threads

• new: make a new lock, initially “not held”

• acquire_write: block if currently “held for reading” or “held for 
writing”, else make “held for writing”

• release_write: make “not held”
• acquire_read: block if currently “held for writing”, else 

make/keep “held for reading” and increment readers count
• release_read: decrement readers count, if 0, make “not held”
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0 ≤≤≤≤ writers ≤≤≤≤ 1
0 ≤≤≤≤ readers
writers* readers==0

Pseudocode example (not Java)
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class Hashtable <K, V> {
…
// coarse-grained, one lock for table
RWLock lk = new RWLock(); 
V lookup (K key ) {

int bucket = hasher(key);
lk.acquire_read();
… read array[bucket] …
lk.release_read();

}
void insert (K key , V val ) {

int bucket = hasher(key);
lk.acquire_write();
… write array[bucket] …
lk.release_write();

}
}

Readers/writer lock details

• A readers/writer lock implementation (“not our problem”) usually 
gives priority to writers:

– Once a writer blocks, no readers arriving later will get the 
lock before the writer

– Otherwise an insert could starve

• That is, it could wait indefinitely because of continuous 
stream of read requests

• Re-entrant? Mostly an orthogonal issue

– But some libraries support upgrading from reader to writer

• Why not use readers/writer locks with more fine-grained locking, 
like on each bucket?

– Not wrong, but likely not worth it due to low contention
27

In Java

[Note: Not needed in your project/homework]

Java’s synchronized statement does not support readers/writer

Instead, library 
java.util.concurrent.locks.ReentrantReadWriteLock

• Different interface: methods readLock and writeLock return 
objects that themselves have lock and unlock methods

• Does not have writer priority or reader-to-writer upgrading
– Always read the documentation
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Outline

Done:

• Programming with locks and critical sections

• Key guidelines and trade-offs

Now: The other basics an informed programmer needs to know

• Why you must avoid data races (memory reorderings)

• Another common error: Deadlock

• Other common facilities useful for shared-memory concurrency

– Readers/writer locks

– Condition variables
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Motivating Condition Variables: 
Producers and Consumers

Another means of allowing concurrent access is the condition 
variable; before we get into that though, lets look at a situation 
where we’d need one:

• Imagine we have several producer threads and several 
consumer threads

– Producers do work, toss their results into a buffer

– Consumers take results off of buffer as they come and 
process them

– Ex: Multi-step computation

f e d cbuffer

back front

producer(s)
enqueue

consumer(s)
dequeue
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Motivating Condition Variables: 
Producers and Consumers

• Cooking analogy: Team one peels potatoes, team two 
takes those and slices them up
– When a member of team one finishes peeling, they toss the 

potato into a tub

– Members of team two pull potatoes out of the tub and dice 
them up

f e d cbuffer

back front

producer(s)
enqueue

consumer(s)
dequeue
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Motivating Condition Variables: 
Producers and Consumers

• If the buffer is empty, consumers have to wait for producers 
to produce more data

• If buffer gets full, producers have to wait for consumers to 
consume some data and clear space

• We’ll need to synchronize access; why?
– Data race; simultaneous read/write or write/write to back/front

f e d cbuffer

back front

producer(s)
enqueue

consumer(s)
dequeue
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A “Bounded-Buffer” problem

To motivate condition variables, consider the canonical example of a 
bounded buffer for sharing work among threads

Bounded buffer: A queue with a fixed size

– (Unbounded still needs a condition variable, but 1 instead of 2)

Use for sharing work – think an assembly line: 

– Producer thread(s) do some work and enqueue result objects

– Consumer thread(s) dequeue results and do next stage
– Must synchronize access to the queue
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f e d cbuffer

back front

producer(s)
enqueue

consumer(s)
dequeue

First 
attempt

class Buffer <E> {
E[] array = (E[]) new Object[SIZE];
… // front, back fields, isEmpty, isFull methods
synchronized void enqueue (E elt ) {

if (isFull())
???

else
… add to array and adjust back …

}
synchronized E dequeue () {

if (isEmpty()) 
???

else
… take from array and adjust front …

}
}

• What to do for ??? One approach; if buffer is full on enqueue , or 
empty on dequeue , throw an exception
– Not what we want here; w/ multiple threads taking & giving, these 

will be common occurrences – should not handle like errors
– Common, and only temporary; will only be empty/full briefly
– Instead, we want threads to be pause until it can proceed
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Waiting

• enqueue to a full buffer should not raise an exception

– Wait until there is room
• dequeue from an empty buffer should not raise an exception

– Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)
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void enqueue (E elt ) {
while (true) {

synchronized ( this ) {
if(isFull()) continue ;
… add to array and adjust back …
return ;

}}}
// dequeue similar

What we want
• Better would be for a thread to wait until it can proceed

– Be notified when it should try again

– Thread suspended until then; in meantime, other threads run
– While waiting, lock is released; will be re-acquired later by one 

notified thread

– Upon being notified, thread just drops in to see what condition it’s 
condition is in

– Team two members work on something else until they’re told more 
potatoes are ready

– Less contention for lock, and time waiting spent more efficiently
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Condition Variables
• Like locks & threads, not something you can implement on your own

– Language or library gives it to you

• An ADT that supports this: condition variable
– Informs waiting thread(s) when the condition that causes it/them 

to wait has varied

• Terminology not completely standard; will mostly stick with Java
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Java approach: not quite right
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class Buffer <E> {
…
synchronized void enqueue (E elt ) {

if (isFull())
this.wait(); // releases lock and waits

add to array and adjust back
if ( buffer was empty )

this.notify(); // wake somebody up
}
synchronized E dequeue () {

if (isEmpty()) 
this.wait(); // releases lock and waits

take from array and adjust front
if ( buffer was full )

this.notify(); // wake somebody up
}

}

Key ideas

• Java weirdness: every object “is” a condition variable (and a lock)
– other languages/libraries often make them separate

• wait:

– “register” running thread as interested in being woken up

– then atomically: release the lock and block

– when execution resumes, thread again holds the lock

• notify:

– pick one waiting thread and wake it up

– no guarantee woken up thread runs next, just that it is no 
longer blocked on the condition – now waiting for the lock

– if no thread is waiting, then do nothing
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Bug #1

Between the time a thread is notified and it re-acquires the lock, the 
condition can become false again!
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synchronized void enqueue (E elt ){ 
if (isFull())

this.wait(); 
add to array and adjust back
…

}

if (isFull())
this.wait(); 

add to array

T
im

e

Thread 2 (dequeue)Thread 1 (enqueue)

take from array
if ( was full )   

this.notify();

make full again

Thread 3 (enqueue)

Bug fix #1

Guideline: Always re-check the condition after re-gaining the lock

– If condition still not met, go back to waiting
– In fact, for obscure reasons, Java is technically allowed to 

notify a thread for no reason
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synchronized void enqueue (E elt ) {
while (isFull())

this .wait();
…

}
synchronized E dequeue () {

while (isEmpty()) 
this .wait();

…
}

Bug #2
• If multiple threads are waiting, we wake up only one

– Works for the most part, but what if 2 are waiting to enqueue, 
and two quick dequeues occur before either gets to go?

– We’d only notify once; other thread would wait forever
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while (isFull())
this.wait(); 

…

T
im

e

Thread 2 (enqueue)Thread 1 (enqueue)

// dequeue #1
if ( buffer was full )

this.notify();

// dequeue #2
if ( buffer was full )

this.notify();

Thread 3 (dequeues)
while (isFull())

this.wait(); 

…



Bug fix #2

notifyAll wakes up all current waiters on the condition variable

Guideline: If in any doubt, use notifyAll

– Wasteful waking is better than never waking up

• So why does notify exist?

– Well, it is faster when correct…
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synchronized void enqueue (E elt ) {
…
if ( buffer was empty )

this.notifyAll(); // wake everybody up
}
synchronized E dequeue () {

…
if ( buffer was full )

this.notifyAll(); // wake everybody up
}

Alternate approach

• An alternative is to call notify (not notifyAll ) on every 
enqueue / dequeue , not just when the buffer was empty / full

– Easy: just remove the if statement

• Alas, makes our code subtly wrong since it’s technically possible 
that an enqueue and a dequeue are both waiting.

– See notes for the step-by-step details of how this can happen

• Works fine if buffer is unbounded since then only dequeuers wait

44

Alternate approach fixed

• The alternate approach works if the enqueuers and dequeuers 
wait on different condition variables

– But for mutual exclusion both condition variables must be 
associated with the same lock

• Java’s “everything is a lock / condition variable” doesn’t support 
this: each condition variable is associated with itself

• Instead, Java has classes in java.util.concurrent.locks
for when you want multiple conditions with one lock
– class ReentrantLock has a method newCondition

that returns a new Condition object associate with the lock

– See the documentation if curious
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Last condition-variable comments

• notify/notifyAll often called signal/broadcast , also 
called pulse/pulseAll

• Condition variables are subtle and harder to use than locks

• But when you need them, you need them 

– Spinning and other work-arounds don’t work well

• Fortunately, like most things in a data-structures course, the 
common use-cases are provided in libraries written by experts

– Example:  
java.util.concurrent.ArrayBlockingQueue<E>

– All uses of condition variables hidden in the library; client just 
calls put and take
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Concurrency summary

• Access to shared resources introduces new kinds of bugs
– Data races

– Critical sections too small

– Critical sections use wrong locks

– Deadlocks

• Requires synchronization
– Locks for mutual exclusion (common, various flavors)

– Condition variables for signaling others (less common) 

• Guidelines for correct use help avoid common pitfalls

• Not clear shared-memory is worth the pain

– But other models (e.g., message passing) not a panacea
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