
CSE332: Data Abstractions

Lecture 20: Shared-Memory Concurrency
& Mutual Exclusion

Ruth Anderson
Winter 2011

Announcements

• Homework 6 – due NOW at the BEGINNING of lecture

• Homework 7 – due Friday March 4th at the BEGINNING of
lecture, coming soon!

• Project 3 – the last programming project!
– Version 1 & 2 - Tues March 1, 2011 11PM - (10% of overall grade)

– ALL Code - Tues March 8, 2011 11PM - (65% of overall grade):

– Writeup - Thursday March 10, 2011, 11PM - (25% of overall grade)

2

Toward sharing resources (memory)

So far, we have been studying parallel algorithms using fork-join model

– Reduce span via parallel tasks

Fork-Join algorithms all had a very simple structure to avoid race conditions

– Each thread had memory “only it accessed”

• Example: each array sub-range accessed by only one thread

– Result of forked process not accessed until after join() called
– So the structure (mostly) ensured that bad simultaneous access

wouldn’t occur

This strategy won’t work well when:

– Memory accessed by threads is overlapping or unpredictable
– Threads are doing independent tasks needing access to same

resources (rather than implementing the same algorithm)

3

Each thread accesses a different sub-range of
the array: Array is shared, but no overlap

4

class SumArray extends RecursiveTask<Integer> {
int lo ; int hi ; int[] arr ; //fields to know what to do
SumArray(int[] a, int l , int h) { … }
protected Integer compute (){ // return answer

if (hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0;
for (int i =lo; i < hi; i++)

ans += arr[i];
return ans;

} else {
SumArray left = new SumArray(arr,lo,(hi+lo)/2);
SumArray right = new SumArray(arr,(hi+lo)/2,hi);
left.fork();
int rightAns = right.compute();
int leftAns = left.join();
return leftAns + rightAns;

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){

return fjPool.invoke(new SumArray(arr,0,arr.length));
}

Really sharing memory between Threads

5

Heap for all objects
and static fields, shared
by all threads

2 Threads, each with own unshared
call stack and “program counter”

pc=0x…

…

pc=0x…

…

Sharing a Queue….

• Imagine 2 threads, running at the same time,
• both with access to a shared linked-list based queue (initially empty)

enqueue (x) {
if(back==null){

back=new Node(x);
front=back;

}
else{

back.next = new Node(x);
back = back.next;

}
}

6

Sharing a Queue….
• Imagine 2 threads, running at the

same time, both with access to a
shared linked-list based queue
(initially empty)

enqueue (x) {
if(back==null){

back=new Node(x);
front=back;

}
else{

back.next = new Node(x);
back = back.next;

}
}

� Each thread has own program counter (and local stack)
� Queue is shared, so both threads indirectly use the same ‘front’

and ‘back’ (which is the whole point of sharing the queue)
� We have no guarantee what happens first between different

threads; can (and will) arbitrarily ‘interrupt’ each other
� Many things can go wrong: say, one tries to enqueue “a”, the

other “b”, and both verify that back is ‘null’ before other sets back
� Result: One assignment of back will be ‘forgotten’

� In general, any ‘interleaving’ of results is possible if enqueue were
called at the same time for both

7

Concurrent Programming

Concurrency: Allowing simultaneous or interleaved access to shared
resources from multiple clients

Requires coordination, particularly synchronization to avoid incorrect
simultaneous access: make somebody block (wait) until the resource
is free
– join is not what we want

– block until another thread is “done using what we need” not
“completely done executing”

Even correct concurrent applications are usually highly non-deterministic:

• how threads are scheduled affects what operations happen first
• non-repeatability complicates testing and debugging

8

Concurrency Examples

What if we have multiple threads:

1. Processing different bank-account operations

– What if 2 threads change the same account at the same time?

2. Using a shared cache (e.g., hashtable) of recent files
– What if 2 threads insert the same file at the same time?

3. Creating a pipeline (think assembly line) with a queue for handing
work to next thread in sequence?
– What if enqueuer and dequeuer adjust a circular array queue

at the same time?

9

Why threads?

Unlike with parallelism, not about implementing algorithms faster

But threads still useful for:

• Code structure for responsiveness

– Example: Respond to GUI events in one thread while
another thread is performing an expensive computation

• Processor utilization (mask I/O latency)

– If 1 thread “goes to disk,” have something else to do

• Failure isolation

– Convenient structure if want to interleave multiple tasks and
don’t want an exception in one to stop the other

10

Sharing, again

It is common in concurrent programs that:

• Different threads might access the same resources in an
unpredictable order or even at about the same time

• Program correctness requires that simultaneous access be
prevented using synchronization

• Simultaneous access is rare
– Makes testing difficult

– Must be much more disciplined when designing /
implementing a concurrent program

– Will discuss common idioms known to work

11

Canonical example

Correct code in a single-threaded world

12

class BankAccount {
private int balance = 0;
int getBalance () { return balance; }
void setBalance (int x) { balance = x; }
void withdraw (int amount) {

int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);

}
… // other operations like deposit, etc.

}

Interleaving

Suppose:
– Thread T1 calls x.withdraw(100)

– Thread T2 calls y.withdraw(100)

If second call starts before first finishes, we say the calls interleave

– Could happen even with one processor since a thread can
be pre-empted at any point for time-slicing

• e.g. T1 runs for 50 ms, pauses somewhere, T2 picks up
for 50ms

If x and y refer to different accounts, no problem

– “You cook in your kitchen while I cook in mine”
– But if x and y alias, possible trouble…

13

What is the balance at the end?
Two threads both trying to withdraw(25) from the same account:
• Assume initial balance 100

14

class BankAccount {
private int balance = 0;
int getBalance () { return balance; }
void setBalance (int x) { balance = x; }
void withdraw (int amount) {

int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);

}
… // other operations like deposit, etc.

}

x.withdraw(25);
Thread 1

x.withdraw(25);
Thread 2

Another example: a bad interleaving
Two threads both trying to withdraw(100) from the same account:
• Assume initial balance 150

• This should cause a WithdrawTooLarge exception

15

int b = getBalance();

if (amount > b)
throw new …;

setBalance(b – amount);

int b = getBalance();
if (amount > b)

throw new …;
setBalance(b – amount);

Thread 1 Thread 2

T
im

e

A bad fix, Another bad interleaving
Two threads both trying to withdraw(100) from the same account:
• Assume initial balance 150

• This should cause a WithdrawTooLarge exception

16

int b = getBalance();
if (amount > getBalance())

throw new …;
setBalance(b – amount);

Thread 1 Thread 2

T
im

e

int b = getBalance();

if (amount > getBalance())
throw new …;

setBalance(b – amount);

Still a bad fix, Another bad interleaving
Two threads both trying to withdraw(100) from the same account:
• Assume initial balance 150

• This should cause a WithdrawTooLarge exception

17

int b = getBalance();
if (amount > getBalance())

throw new …;

setBalance(getBalance() –
amount);

Thread 1 Thread 2

T
im

e

int b = getBalance();

if (amount > getBalance())
throw new …;

setBalance(getBalance() –
amount);

Instead of an exception,
we have a “Lost withdraw”

Incorrect “fix”
It is tempting and almost always wrong to fix a bad interleaving by

rearranging or repeating operations, such as:

18

void withdraw (int amount) {
if (amount > getBalance())

throw new WithdrawTooLargeException();
// maybe balance changed
setBalance(getBalance() – amount);

}

This fixes nothing!

• Narrows the problem by one statement

• (Not even that since the compiler could turn it back into the
old version because you didn’t indicate need to synchronize)

• And now a negative balance is possible – why?

Mutual exclusion

The sane fix: At most one thread withdraws from account A at a time

– Exclude other simultaneous operations on A too (e.g., deposit)

Called mutual exclusion: One thread doing something with a resource
(here: an account) means another thread must wait
– Define critical sections; areas of code that are mutually

exclusive

Programmer (you!) must implement critical sections
– “The compiler” has no idea what interleavings should or

shouldn’t be allowed in your program

– But you need language primitives to do it!

19

Why is this Wrong?
Why can’t we implement our own mutual-exclusion protocol?

– Say we tried to coordinate it ourselves using a boolean variable – “busy ”

20

class BankAccount {
private int balance = 0;
private boolean busy = false;
void withdraw (int amount) {

while(busy) { /* “spin-wait” */ }
busy = true;
int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
busy = false;

}
// deposit would spin on same boolean

}

Still just moved the problem!

21

while (busy) { }

busy = true;

int b = getBalance();

if (amount > b)
throw new …;

setBalance(b – amount);

while (busy) { }

busy = true;

int b = getBalance();
if (amount > b)

throw new …;
setBalance(b – amount);

Thread 1 Thread 2

T
im

e

“Lost withdraw” –
unhappy bank

Time does elapse between checking ‘busy’ and setting ‘busy’; can
be interrupted there

Busy is initially = false

What we need:

• There are many ways out of this conundrum, but we need help from
the language

• One basic solution: Locks

– Still on a conceptual level at the moment, ‘Lock’ is not a Java class

• We will define Lock as an ADT with operations:
– new: make a new lock

– acquire : If lock is “not held”, makes it “held”

• blocks if this lock is already currently “held”

• Checking & setting happen together, and cannot be interrupted

• Fixes problem we saw before
– release : makes this lock “not held”

• if >= 1 threads are blocked on it, exactly 1 will acquire it

22

Why that works

• A Lock ADT with operations new, acquire , release

• The lock implementation ensures that given simultaneous
acquires and/or releases, a correct thing will happen

– Example:
• If we have two acquires: one will “win” and one will block

• How can this be implemented?

– Need to “check-and-update” all at once

– Uses special hardware and O/S support
• See a senior-level course in computer architecture or

operating systems

– In CSE 332, we take this as a primitive and use it

23

Almost-correct pseudocode

24

class BankAccount {
private int balance = 0;
private Lock lk = new Lock();
…
void withdraw (int amount) {

lk.acquire(); /* may block */
int b = getBalance();
if (amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.release();

}
// deposit would also acquire/release lk

}

Note: ‘Lock’ is not an
actual Java class

Some mistakes
• A lock is a very primitive mechanism

– Still up to you to use correctly to implement critical sections

• Incorrect: Forget to release a lock (blocks other threads forever!)

– Previous slide is wrong because of the exception possibility!

• Incorrect : Use different locks for withdraw and deposit

– Mutual exclusion works only when using same lock

• Poor performance: Use same lock for every bank account

– No simultaneous withdrawals from different accounts

25

if (amount > b) {
lk.release(); // hard to remember!
throw new WithdrawTooLargeException();

}

Other operations

• If withdraw and deposit use the same lock, then
simultaneous calls to these methods are properly synchronized

• But what about getBalance and setBalance ?

– Assume they’re public , which may be reasonable

• If they don’t acquire the same lock, then a race between
setBalance and withdraw could produce a wrong result

• If they do acquire the same lock, then withdraw would block
forever because it tries to acquire a lock it already has

26

One (not very good) possibility

Have two versions of setBalance!
• withdraw calls setBalance1

(since it already has the lock)
• Outside world calls

setBalance2

• Could work (if adhered to), but
not good style; also not very
convenient

• Alternately, we can modify the
meaning of the Lock ADT to
support re-entrant locks
– Java does this
– Then just always use

setBalance2

int setBalance1 (int x) {
balance = x;

}
int setBalance2 (int x) {

lk.acquire();
balance = x;
lk.release();

}
void withdraw (int amount) {

lk.acquire();
…
setBalance X(b – amount);
lk.release();

}

27

Re-entrant lock idea

A re-entrant lock (a.k.a. recursive lock)

• The idea: Once acquired, the lock is held by the Thread, and
subsequent calls to acquire in that Thread won’t block

• Result: withdraw can acquire the lock, and then call
setBalance , which can also acquire the lock

– Because they’re in the same thread & it’s a re-entrant lock,
the inner acquire won’t block!!

28

Re-entrant lock

A re-entrant lock (a.k.a. recursive lock)

• “Remembers”

– the thread (if any) that currently holds it

– a count

• When the lock goes from not-held to held, the count is 0

• If (code running in) the current holder calls acquire :

– it does not block

– it increments the count

• On release :

– if the count is > 0, the count is decremented
– if the count is 0, the lock becomes not-held

29

Java’s Re-entrant Lock

• java.util.concurrent.locks.ReentrantLock

• Has methods lock() and unlock()

• As described above, it is conceptually owned by the Thread,
and shared within that thread

• Important to guarantee that lock is always released!!!
• Recommend something like this:

myLock. lock() ;

try { // method body }

finally { myLock. unlock() ; }

• Despite what happens in ‘try’, the code in finally will
execute afterwards

30

Synchronized : A Java convenience

Java has built-in support for re-entrant locks
– You can use the synchronized statement as an

alternative to declaring a ReentrantLock

31

synchronized (expression) {
statements

}

1. Evaluates expression to an object
• Every object (but not primitive types) “is a lock” in Java

2. Acquires the lock, blocking if necessary
• “If you get past the { , you have the lock”

3. Releases the lock “at the matching } ”

• Even if control leaves due to throw , return , etc.

• So impossible to forget to release the lock

Java example (correct but can be improved)

32

class BankAccount {
private int balance = 0;
private Object lk = new Object ();
int getBalance ()

{ synchronized (lk) { return balance; } }
void setBalance (int x)

{ synchronized (lk) { balance = x; } }
void withdraw (int amount) {

synchronized (lk) {
int b = getBalance();
if (amount > b)

throw …
setBalance(b – amount);

}
}
// deposit would also use synchronized(lk)

}

Improving the Java

• As written, the lock is private
– Might seem like a good idea

– But also prevents code in other classes from writing
operations that synchronize with the account operations

• More common is to synchronize on this …

– Also, it’s convenient; don’t need to declare an extra object!

33

Java version #2

34

class BankAccount {
private int balance = 0;
int getBalance ()

{ synchronized (this){ return balance; } }
void setBalance (int x)

{ synchronized (this){ balance = x; } }
void withdraw (int amount) {

synchronized (this) {
int b = getBalance();
if (amount > b)

throw …
setBalance(b – amount);

}
}
// deposit would also use synchronized(this)

}

Syntactic sugar

Version #2 is slightly poor style because there is a shorter way to
say the same thing:

Putting synchronized before a method declaration means the
entire method body is surrounded by

synchronized (this){…}

Therefore, version #3 (next slide) means exactly the same thing as
version #2 but is more concise

35

Java version #3 (final version)

36

class BankAccount {
private int balance = 0;
synchronized int getBalance ()

{ return balance; }
synchronized void setBalance (int x)

{ balance = x; }
synchronized void withdraw (int amount) {

int b = getBalance();
if (amount > b)

throw …
setBalance(b – amount);

}
// deposit would also use synchronized

}

Addendum: More Java notes

• Class java.util.concurrent.ReentrantLock works
much more like our pseudocode
– Often use try { … } finally { … } to avoid forgetting

to release the lock if there’s an exception

• Also library and/or language support for readers/writer locks and
condition variables (upcoming lectures)

• Lots of features and details (you are not responsible for) in
Chapter 14 of CoreJava, Volume 1

– For an entire book on advanced topics see

“Java Concurrency in Practice” [Goetz et all]

37

