

Outline

Done

- How to use fork and join to write a parallel algorithm
- Why using divide-and-conquer with lots of small tasks is best - Combines results in parallel
- Some Java and ForkJoin Framework specifics
- More pragmatics (e.g., installation) in separate notes

Now:

- More examples of simple parallel programs
- Arrays \& balanced trees support parallelism, linked lists don't
- Asymptotic analysis for fork-join parallelism
- Amdahl's Law

Announcements

- Homework 5 - due NOW, at the BEGINNING of lecture
- Homework 6 - due Friday Feb $25^{\text {th }}$ at the BEGINNING of lecture
- Project 3 - the last programming project!
- Partner Selection - Tues, Feb 22, 11pm
- Version 1 \& 2 - Tues March 1, 2011 11PM - (10% of overall grade)
- ALL Code - Tues March 8, 2011 11PM - (65% of overall grade):
- Writeup - Thursday March 10, 2011, 11PM - (25\% of overall grade)

We looked at summing an array

- Summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n)
- An exponential speed-up in theory
- Not bad; that's 4 billion versus 32 (without constants, and in theory)

Extending Parallel Sum

- We can tweak the 'parallel sum' algorithm to do all kinds of things; just specify 2 parts (usually)
- Describe how to compute the result at the 'cut-off' (Sum: Iterate through sequentially and add them up)
- Describe how to merge results (Sum: Just add 'left' and 'right' results)

Examples

- Parallelization (for some algorithms)
- Describe how to compute result at the 'cut-off'
- Describe how to merge results
- How would we do the following (assuming data is given as an array)?

1. Maximum or minimum element
2. Is there an element satisfying some property (e.g., is there a 17)?
3. Left-most element satisfying some property (e.g., first 17)
4. Smallest rectangle encompassing a number of points (proj3)
5. Counts; for example, number of strings that start with a vowel
6. Are these elements in sorted order?

Reductions

- This class of computations are called reductions
- We 'reduce' a large array of data to a single item
- Note: Recursive results don't have to be single numbers or strings. They can be arrays or objects with multiple fields.
- Example: create a Histogram of test results from a much larger array of actual test results
- While many can be parallelized due to nice properties like associativity of addition, some things are inherently sequential
- How we process arr [i] may depend entirely on the result of processing arr [i-1]

Even easier: Data Parallel (Maps)

- While reductions are a simple pattern of parallel programming, maps are even simpler
- Operate on set of elements to produce a new set of elements (no combining results); generally input and output are of the same length
- Eg. Multiply each element of an array by 2.
- Example: Vector addition

```
int[] vector_add(int[] arr1, int[] arr2) (
    assert (arr1.length == arr2.length);
    result = new int[arr1.length]
        FORALL(i=0; i < arr1.length; i++) {
            result[i] = arr1[i] + arr2[i];
        }
return result;
}
```


Maps in ForkJoin Framework

class VecAdd extends RecursiveAction $\{$ int lo; int hi; int[] res; int[] arr1; int[] arr2; VecAdd(int l,int h,int[] r,int[] a1,int[] a2) \{ ... \} protected void compute() if for (int $i=10$; $i<h i ; i++$) res[i] = arr1[i] + arr2[i]
\} else $\left\{\begin{array}{l}\text { eld } \\ \text { int mid } \\ \text { (hitlo) } / 2 \text {; }\end{array}\right.$
ecAdd left $=$ new VecAdd (lo,mid, res,arr1, arr2) ; VecAdd right= new VecAdd(mid,hi,res,arr1,arr2); left.fork (),
left.join(); //'this was missing on orig slide
$\}^{\}}$
\} ${ }^{\}}$
static final ForkJoinPool fjPool = new ForkJoinPool()
int [] add (int[] arr1, int[] arr2) \{
assert (arrl. int [] ans $=$ new int [arr1 length $]$;
fjPool.invoke (new VecAdd(0, arr.length, ans, arr1, arr2) return ans;
\}

Map vs reduce in ForkJoin framework

- In our examples:
- Reduce:
- Parallel-sum extended RecursiveTask
- Result was returned from compute()
- Map:
- Class extended was RecursiveAction
- Nothing returned from compute()
- In the above code, the 'answer' array was passed in as a parameter
- Doesn't have to be this way
- Map can use RecursiveTask to, say, return an array
- Reduce could use RecursiveAction; depending on what you're passing back via RecursiveTask, could store it as a class variable and access it via 'left' or 'right' when done

Digression on maps and reduces

- You may have heard of Google's "map/reduce"
- Or the open-source version Hadoop
- Idea: Want to run algorithm on enormous amount of data; say, sort a petabyte (10^{6} gigabytes) of data
- Perform maps and reduces on data using many machines
- The system takes care of distributing the data and managing fault tolerance
- You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
- Old idea in higher-order programming (see CSE 341) transferred to large-scale distributed computing

Works on Trees as well as Arrays

- Our basic patterns so far - maps and reduces - work just fine on balanced trees
- Divide-and-conquer each child rather than array sub-ranges
- Correct for unbalanced trees, but won't get much speed-up
- Example: minimum element in an unsorted but balanced binary tree in $O(\log n)$ time given enough processors
- How to do the sequential cut-off?
- Store number-of-descendants at each node (easy to maintain)
- Or could approximate it with, e.g., AVL height

Linked lists

- Can you parallelize maps or reduces over linked lists?
- Example: Increment all elements of a linked list
- Example: Sum all elements of a linked list

- Once again, data structures matter!
- For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster $O(\log n)$ vs. $O(n)$
- Trees have the same flexibility as lists compared to arrays (in terms of say inserting an item in the middle of the list)

Work and Span

Let $\mathbf{T}_{\mathbf{p}}$ be the running time if there are \mathbf{P} processors available Type/power of processors doesn't matter; \mathbf{T}_{p} used asymptotically, and to compare improvement by adding a few processors

Two key measures of run-time for a fork-join computation:

- Work: How long it would take 1 processor $=\mathbf{T}_{1}$
- Just "sequentialize" all the recursive forking
- Span: How long it would take infinity processors $=\mathbf{T}_{\boldsymbol{\infty}}$
- The hypothetical ideal for parallelization
- This is the longest "dependence chain" in the computation

The DAG

- A program execution using fork and join can be seen as a DAG
- Nodes: Pieces of work
- Edges: Source node must finish before destination node starts

- A fork "ends a node" and makes two outgoing edges
- New thread
- Continuation of current thread
- A join "ends a node" and makes a node with two incoming edges
- Node just ended
- Last node of thread joined on

Our simple examples

- fork and join are very flexible, but our divide-and-conquer maps and reduces so far use them in a very basic way:
- A tree on top of an upside-down tree

Our simple examples

Our fork and join frequently look like this:

In this context, the span (\mathbf{T}_{∞}) is:
-The longest dependence-chain; longest 'branch' in parallel 'tree'
-Example: $O(\log n)$ for summing an array; we halve the data down to our cut-off, then add back together; $O(\log n)$ steps, $O(1)$ time for each -Also called "critical path length" or "computational depth"

More interesting DAGs?

- The DAGs are not always this simple
- Example:
- Suppose combining two results might be expensive enough that we want to parallelize each one
- Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation

Connecting to performance

- Recall: $\mathbf{T}_{\mathbf{P}}=$ running time if there are \mathbf{P} processors available
- Work $=\mathrm{T}_{1}$ = sum of run-time of all nodes in the DAG
- One processor has to do all the work
- Any topological sort is a legal execution
- Span $=\mathbf{T}_{\infty}=$ sum of run-time of all nodes on the most-expensive path in the DAG
- Note: costs are on the nodes not the edges
- Our infinite army can do everything that is ready to be done, but still has to wait for earlier results

Definitions

A couple more terms:

- Speed-up on \mathbf{P} processors: $\mathbf{T}_{1} / \mathbf{T}_{\mathbf{P}}$
- If speed-up is \mathbf{P} as we vary \mathbf{P}, we call it perfect linear speed-up
- Perfect linear speed-up means doubling \mathbf{P} halves running time
- Usually our goal; hard to get in practice
- Parallelism is the maximum possible speed-up: $\mathbf{T}_{\mathbf{1}} / \mathbf{T}_{\infty}$
- At some point, adding processors won't help
- What that point is depends on the span

Division of responsibility

- Our job as ForkJoin Framework users:
- Pick a good algorithm
- Write a program. When run, it creates a DAG of things to do
- Make all the nodes a small-ish and approximately equal amount of work
- The framework-writer's job (won't study how to do it):
- Assign work to available processors to avoid idling
- Keep constant factors low
- Give an expected-time guarantee (like quicksort) assuming framework-user did his/her job

$$
\mathrm{T}_{\mathrm{P}}=O\left(\left(\mathrm{~T}_{1} / \mathrm{P}\right)+\mathrm{T}_{\infty}\right)
$$

What that means (mostly good news)

The fork-join framework guarantee:

$$
T_{P}=O\left(\left(T_{1} / P\right)+T_{\infty}\right)
$$

- No implementation of your algorithm can beat $\boldsymbol{O}\left(\mathbf{T}_{\infty}\right)$ by more than a constant factor
- No implementation of your algorithm on \mathbf{P} processors can beat $O\left(T_{1} / P\right)$ (ignoring memory-hierarchy issues)
- So the framework on average gets within a constant factor of the best you can do, assuming the user did his/her job

So: You can focus on your algorithm, data structures, and cutoffs rather than number of processors and scheduling

- Analyze running time given $\mathbf{T}_{1}, \mathbf{T}_{\infty}$, and \mathbf{P}

Examples

$$
\mathrm{T}_{\mathrm{P}}=O\left(\left(\mathrm{~T}_{1} / \mathrm{P}\right)+\mathrm{T}_{\infty}\right)
$$

- In the algorithms seen so far (e.g., sum an array):
- $\mathrm{T}_{1}=O(n)$
- $\mathbf{T}_{\infty}=O(\log n)$
- So expect (ignoring overheads): $\mathbf{T}_{\mathbf{P}} \mathbf{= O}(n / \mathbf{P}+\log n)$
- Suppose instead:
- $\mathrm{T}_{1}=O\left(n^{2}\right)$
- $\mathbf{T}_{\infty}=O(n)$
- So expect (ignoring overheads): $\mathbf{T}_{\mathbf{P}}=\mathbf{O}\left(n^{2} / \mathbf{P}+n\right)$

Amdahl's Law (mostly bad news)

- So far: talked about a parallel program in terms of work and span
- In practice, it's common that your program has:
a) parts that parallelize well:
- Such as maps/reduces over arrays and trees
b) ...and parts that don't parallelize at all:
- Such as reading a linked list, getting input, or just doing computations where each step needs the results of previous step
- These unparallelized parts can turn out to be a big bottleneck

Amdahl's Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time.
Let \mathbf{S} be the portion of the execution that can't be parallelized (i.e. must be run sequentially)

$$
\text { Then: } \quad \mathrm{T}_{1}=S+(1-S)=1
$$

Suppose we get perfect linear speedup on the parallel portion
Then: $\quad \mathbf{T}_{P}=\mathbf{S}+(\mathbf{1 - S}) / \mathbf{P}$
So the overall speedup with \mathbf{P} processors is (Amdahl's Law):
$T_{1} / T_{P}=1 /(S+(1-S) / P)$

And the parallelism (infinite processors) is:

$$
\mathrm{T}_{1} / \mathrm{T}_{\infty}=1 / \mathrm{S}
$$

Amdahl's Law Example

Suppose: $\quad \mathbf{T}_{1}=\mathbf{S + (1 - S) = 1}$ (aka total program execution time) $T_{1}=1 / 3+2 / 3=1$
$\mathrm{T}_{1}=33 \mathrm{sec}+67 \mathrm{sec}=100 \mathrm{sec}$

Time on P processors: $\mathbf{T}_{\mathbf{P}}=\mathbf{S}+(\mathbf{1 - S}) / \mathbf{P}$

So: $\quad T_{p}=33 \mathrm{sec}+(67 \mathrm{sec}) / \mathrm{P}$ $\mathrm{T}_{3}=33 \mathrm{sec}+(67 \mathrm{sec}) / 3=$

Why such bad news?

$$
\mathrm{T}_{1} / \mathrm{T}_{\mathrm{P}}=1 /(\mathrm{S}+(1-\mathrm{S}) / \mathrm{P}) \quad \mathrm{T}_{1} / \mathrm{T}_{\infty}=1 / \mathrm{S}
$$

- Suppose 33% of a program is sequential
- Then a billion processors won't give a speedup over 3!!!
- No matter how many processors you use, your speedup is bounded by the sequential portion of the program.

The future and Amdahl's Law

Speedup:
$T_{1} / T_{P}=1 /(S+(1-S) / P)$
Max Parallelism:
$\mathrm{T}_{1} / \mathrm{T}_{\infty}=1 / \mathrm{S}$

- Suppose you miss the good old days (1980-2005) where 12 ish years was long enough to get 100x speedup
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- What portion of the program must be parallelizable to get 100x speedup?

The future and Amdahl's Law

Speedup:

$$
\mathrm{T}_{1} / \mathrm{T}_{\mathrm{P}}=1 /(\mathrm{S}+(1-\mathrm{S}) / \mathrm{P})
$$

Max Parallelism:
$T_{1} / T_{\infty}=1 / S$

- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get $100 x$ speedup
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- What portion of the program must be parallelizable to get 100 x speedup?

For 256 processors to get at least 100x speedup, we need $100 \leq 1 /(\mathbf{S}+(1-\mathbf{S}) / 256)$
Which means $\mathrm{S} \leq .0061$ (i.e., 99.4% must be parallelizable)

Plots you have to see

1. Assume 256 processors

- x-axis: sequential portion S, ranging from . 01 to 25
- y-axis: speedup $\mathbf{T}_{1} / \mathbf{T}_{\mathbf{p}}$ (will go down as \mathbf{S} increases)

2. Assume $\mathbf{S}=.01$ or .1 or .25 (three separate lines)

- x-axis: number of processors \mathbf{P}, ranging from 2 to 32
- y-axis: speedup $\mathbf{T}_{1} / \mathbf{T}_{\mathbf{P}}$ (will go up as \mathbf{P} increases)

I encourage you to try this out!

- Chance to use a spreadsheet or other graphing program
- Compare against your intuition
- A picture is worth 1000 words, especially if you made it

All is not lost

Amdahl's Law is a bummer!

- But it doesn't mean additional processors are worthless
- We can find new parallel algorithms
- Some things that seem entirely sequential turn out to be parallelizable
- Eg. How can we parallelize the following?
- Take an array of numbers, return the 'running sum' array:
inpu

6	4	16	10	16	14	2	8
6	10	26	36	52	66	68	76

- At a glance, not sure; we'll explore this shortly
- We can also change the problem we're solving or do new things
- Example: Video games use tons of parallel processors
- They are not rendering 10-year-old graphics faster
- They are rendering richer environments and more beautiful
(terrible?) monsters (terrible?) monsters

