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Announcements

• Homework 5 – due NOW, at the BEGINNING of lecture

• Homework 6 – due Friday Feb 25th at the BEGINNING of lecture

• Project 3 – the last programming project!
– Partner Selection - Tues, Feb 22, 11pm
– Version 1 & 2 - Tues March 1, 2011 11PM - (10% of overall grade)

– ALL Code - Tues March 8, 2011 11PM - (65% of overall grade):

– Writeup - Thursday March 10, 2011, 11PM - (25% of overall grade)
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Outline

Done:
• How to use fork and join to write a parallel algorithm

• Why using divide-and-conquer with lots of small tasks is best

– Combines results in parallel

• Some Java and ForkJoin Framework specifics

– More pragmatics (e.g., installation) in separate notes

Now:

• More examples of simple parallel programs

• Arrays & balanced trees support parallelism, linked lists don’t

• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law
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We looked at summing an array

• Summing an array went from O(n) sequential to O(log n) parallel 
(assuming a lot of processors and very large n)
– An exponential speed-up in theory
– Not bad; that’s 4 billion versus 32 (without constants, and in 

theory)

+ + + + + + + +

+ + + +

+ +
+

• Anything that can use results from two halves and merge them 
in O(1) time has the same property…
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Extending Parallel Sum
• We can tweak the ‘parallel sum’ algorithm to do all kinds of things; 

just specify 2 parts (usually)
– Describe how to compute the result at the ‘cut-off’

(Sum: Iterate through sequentially and add them up)

– Describe how to merge results 
(Sum: Just add ‘left’ and ‘right’ results)

+ + + + + + + +

+ + + +

+ +
+
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Examples

• Parallelization (for some algorithms)
– Describe how to compute result at the ‘cut-off’

– Describe how to merge results

• How would we do the following (assuming data is given as an array)?

1. Maximum or minimum element

2. Is there an element satisfying some property (e.g., is there a 17)?

3. Left-most element satisfying some property (e.g., first 17)
4. Smallest rectangle encompassing a number of points (proj3)

5. Counts; for example, number of strings that start with a vowel

6. Are these elements in sorted order?

+ + + + + + + +
+ + + +

+ +
+
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Reductions

• This class of computations are called reductions

– We ‘reduce’ a large array of data to a single item

• Note: Recursive results don’t have to be single numbers or 
strings.  They can be arrays or objects with multiple fields.
– Example: create a Histogram of test results from a much 

larger array of actual test results

• While many can be parallelized due to nice properties like 
associativity of addition, some things are inherently sequential
– How we process arr[i] may depend entirely on the result 

of processing arr[i-1]
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Even easier: Data Parallel (Maps)
• While reductions are a simple pattern of parallel programming, 

maps are even simpler

– Operate on set of elements to produce a new set of elements 
(no combining results); generally input and output are of the 
same length

– Eg. Multiply each element of an array by 2.

• Example: Vector addition
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int[] vector_add (int[] arr1 , int[] arr2 ){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL( i =0; i < arr1.length; i++) {

result[i] = arr1[i] + arr2[i];
}
return result;

}

Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps with load 
balancing to create many small tasks

– Maybe not for vector-add but for more compute-intensive maps

– The forking is O(log n) whereas theoretically other approaches 
to vector-add is O(1)
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class VecAdd extends RecursiveAction {
int lo ; int hi ; int[] res ; int[] arr1 ; int[] arr2 ;   
VecAdd(int l ,int h,int[] r ,int[] a1,int[] a2){ … }
protected void compute (){

if (hi – lo < SEQUENTIAL_CUTOFF) {
for (int i =lo; i < hi; i++)

res[i] = arr1[i] + arr2[i];
} else {

int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right = new VecAdd(mid,hi,res,arr1,arr2);   
left.fork();
right.compute(); 
left.join(); // this was missing on orig slide

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1 , int[] arr2 ){

assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
fjPool.invoke( new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}

Map vs reduce in ForkJoin framework

• In our examples:
• Reduce:

– Parallel-sum extended RecursiveTask
– Result was returned from compute()

• Map:
– Class extended was RecursiveAction
– Nothing returned from compute()
– In the above code, the ‘answer’ array was passed in as a 

parameter
• Doesn’t have to be this way

– Map can use RecursiveTask to, say, return an array
– Reduce could use RecursiveAction; depending on what you’re 

passing back via RecursiveTask, could store it as a class 
variable and access it via ‘left’ or ‘right’ when done
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Digression on maps and reduces

• You may have heard of Google’s “map/reduce”
– Or the open-source version Hadoop

• Idea: Want to run algorithm on enormous amount of data; say, 
sort a petabyte (106 gigabytes) of data

– Perform maps and reduces on data using many machines
• The system takes care of distributing the data and 

managing fault tolerance

• You just write code to map one element and reduce 
elements to a combined result

– Separates how to do recursive divide-and-conquer from 
what computation to perform

• Old idea in higher-order programming (see CSE 341) 
transferred to large-scale distributed computing
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Works on Trees as well as Arrays

• Our basic patterns so far – maps and reduces – work just fine on 
balanced trees

– Divide-and-conquer each child rather than array sub-ranges

– Correct for unbalanced trees, but won’t get much speed-up

• Example: minimum element in an unsorted but balanced binary 
tree in O(log n) time given enough processors

• How to do the sequential cut-off?
– Store number-of-descendants at each node (easy to maintain)

– Or could approximate it with, e.g., AVL height
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Linked lists

• Can you parallelize maps or reduces over linked lists?

– Example: Increment all elements of a linked list

– Example: Sum all elements of a linked list
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b c d e f

front back

• Once again, data structures matter!

• For parallelism, balanced trees generally better than lists so that 
we can get to all the data exponentially faster O(log n) vs. O(n)

– Trees have the same flexibility as lists compared to arrays 
(in terms of say inserting an item in the middle of the list)

Analyzing algorithms

• Like all algorithms, parallel algorithms should be:

– Correct 

– Efficient

• For our algorithms so far, correctness is “obvious” so we’ll focus on 
efficiency:

– We still want asymptotic bounds

– Want to analyze the algorithm without regard to a specific 
number of processors

– The key “magic” of the ForkJoin Framework is getting expected 
run-time performance asymptotically optimal for the available 
number of processors

• This lets us just analyze our algorithms given this “guarantee”

14

Work and Span

Let TP be the running time if there are P processors available

Type/power of processors doesn’t matter; TP used asymptotically, 
and to compare improvement by adding a few processors

Two key measures of run-time for a fork-join computation:
• Work: How long it would take 1 processor = T1

– Just “sequentialize” all the recursive forking

• Span: How long it would take infinity processors = T∞∞∞∞
– The hypothetical ideal for parallelization
– This is the longest “dependence chain” in the computation
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The DAG

• A program execution using fork and join can be seen as a DAG

– Nodes: Pieces of work 

– Edges: Source node must finish before destination node starts
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• A fork “ends a node” and makes 
two outgoing edges

• New thread
• Continuation of current thread

• A join “ends a node” and makes 
a node with two incoming edges

• Node just ended
• Last node of thread joined on

Our simple examples

• fork and join are very flexible, but our divide-and-conquer 
maps and reduces so far use them in a very basic way:

– A tree on top of an upside-down tree
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base cases

divide 

combine 
results 

Our simple examples

Our fork and join frequently look like this:

base cases

divide 

combine 
results 

In this context, the span (T∞∞∞∞) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
•Example: O(log n) for summing an array; we halve the data down to our 
cut-off, then add back together; O(log n) steps, O(1) time for each
•Also called “critical path length” or “computational depth”
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More interesting DAGs?

• The DAGs are not always this simple

• Example: 

– Suppose combining two results might be expensive enough 
that we want to parallelize each one

– Then each node in the inverted tree on the previous slide 
would itself expand into another set of nodes for that parallel 
computation
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Connecting to performance

• Recall: TP = running time if there are P processors available

• Work = T1 = sum of run-time of all nodes in the DAG

– One processor has to do all the work

– Any topological sort is a legal execution

• Span = T∞∞∞∞ = sum of run-time of all nodes on the most-expensive 
path in the DAG

– Note: costs are on the nodes not the edges

– Our infinite army can do everything that is ready to be done, 
but still has to wait for earlier results
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Definitions

A couple more terms:

• Speed-up on P processors: T1 / TP 

• If speed-up is P as we vary P, we call it perfect linear speed-up

– Perfect linear speed-up means doubling P halves running time
– Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T ∞∞∞∞

– At some point, adding processors won’t help

– What that point is depends on the span
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Division of responsibility

• Our job as ForkJoin Framework users:

– Pick a good algorithm

– Write a program.  When run, it creates a DAG of things to do

– Make all the nodes a small-ish and approximately equal 
amount of work

• The framework-writer’s job (won’t study how to do it):

– Assign work to available processors to avoid idling

– Keep constant factors low

– Give an expected-time guarantee (like quicksort) assuming 
framework-user did his/her job

TP  = O((T1 / P) + T ∞∞∞∞)
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What that means (mostly good news)

The fork-join framework guarantee:

TP  = O((T1 / P) + T ∞∞∞∞)

– No implementation of your algorithm can beat O(T ∞∞∞∞) by 
more than a constant factor

– No implementation of your algorithm on P processors can 
beat O(T1 / P) (ignoring memory-hierarchy issues)

– So the framework on average gets within a constant factor of 
the best you can do, assuming the user did his/her job

So: You can focus on your algorithm, data structures, and cut-
offs rather than number of processors and scheduling

• Analyze running time given T1, T ∞∞∞∞, and P
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Examples

TP  = O((T1 / P) + T ∞∞∞∞)

• In the algorithms seen so far (e.g., sum an array):

– T1 = O(n)
– T ∞∞∞∞= O(log n)

– So expect (ignoring overheads): TP  = O(n/P + log n)

• Suppose instead:

– T1 = O(n2)

– T ∞∞∞∞= O(n)

– So expect (ignoring overheads): TP  = O(n2/P + n)
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Amdahl’s Law (mostly bad news)

• So far: talked about a parallel program in terms of work and span

• In practice, it’s common that your program has:

a) parts that parallelize well :
– Such as maps/reduces over arrays and trees 

b) …and parts that don’t parallelize at all :
– Such as reading a linked list, getting input, or just doing 

computations where each step needs the results of previous step

• These unparallelized parts can turn out to be a big bottleneck
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Amdahl’s Law (mostly bad news)
Let the work (time to run on 1 processor) be 1 unit time.

Let S be the portion of the execution that can’t be parallelized (i.e. 
must be run sequentially)

Then: T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then: TP = S + (1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):
T1 / TP = 1 / (S + (1-S)/P) 

And the parallelism (infinite processors) is:

T1 / T∞∞∞∞ = 1 / S
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Amdahl’s Law Example
Suppose: T1 = S + (1-S) = 1  (aka total program execution time)

T1 = 1/3 + 2/3 = 1
T1 = 33 sec + 67 sec = 100 sec

Time on P processors: TP = S + (1-S)/P 

So: TP = 33 sec + (67 sec)/P
T3 = 33 sec + (67 sec)/3 = 
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Why such bad news?

T1 / TP = 1 / (S + (1-S)/P) T1 / T∞∞∞∞ = 1 / S

• Suppose 33% of a program is sequential

– Then a billion processors won’t give a speedup over 3!!!

• No matter how many processors you use, your speedup is 
bounded by the sequential portion of the program.
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The future and Amdahl’s Law

Speedup: T 1 / TP = 1 / (S + (1-S)/P) 
Max Parallelism: T 1 / T∞∞∞∞ = 1 / S

• Suppose you miss the good old days (1980-2005) where 12ish 
years was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but you 

get 256 processors instead of 1

– What portion of the program must be parallelizable to get 
100x speedup?
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The future and Amdahl’s Law

Speedup: T 1 / TP = 1 / (S + (1-S)/P) 
Max Parallelism: T 1 / T∞∞∞∞ = 1 / S

• Suppose you miss the good old days (1980-2005) where 12ish years 
was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but you get 256

processors instead of 1

– What portion of the program must be parallelizable to get 100x 
speedup?

For 256 processors to get at least 100x speedup, we need

100 ≤≤≤≤ 1 / (S + (1-S)/256)

Which means S ≤≤≤≤ .0061  (i.e., 99.4% must be parallelizable) 
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Plots you have to see

1. Assume 256 processors

– x-axis: sequential portion S, ranging from .01 to .25

– y-axis: speedup T1 / TP (will go down as S increases)

2. Assume S = .01 or .1 or .25 (three separate lines)

– x-axis: number of processors P, ranging from 2 to 32
– y-axis: speedup T1 / TP (will go up as P increases)

I encourage you to try this out!

– Chance to use a spreadsheet or other graphing program  

– Compare against your intuition
– A picture is worth 1000 words, especially if you made it
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All is not lost
Amdahl’s Law is a bummer!

– But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
– Some things that seem entirely sequential turn out to be 

parallelizable
– Eg. How can we parallelize the following?

• Take an array of numbers, return the ‘running sum’ array:

– At a glance, not sure; we’ll explore this shortly
• We can also change the problem we’re solving or do new things

– Example: Video games use tons of parallel processors  
• They are not rendering 10-year-old graphics faster
• They are rendering richer environments and more beautiful 

(terrible?) monsters

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76
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Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the 
semiconductor industry

– Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem

– Implies diminishing returns of adding more processors

• Both are incredibly important in designing computer systems
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