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Announcements

• Homework 4 – due NOW, Monday Feb 14th at the BEGINNING of 
lecture

• Project 2 – Phase B due Tues Feb 15th at 11pm

– Clarifications posted, check Msg board, email cse332-staff

• Homework 5 – due Friday Feb 18th at the BEGINNING of lecture
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Today

• Graphs

– Shortest Paths

• Intro to Parallelism

– Multithreading & Fork-Join Parallelism
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Changing a major assumption
So far most or all of your study of computer science has assumed

One thing happened at a time
Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

– Programming: Divide work among threads of execution and 
coordinate (synchronize) among them

– Algorithms: How can parallel activity provide speed-up 

(more throughput: work done per unit time)

– Data structures: May need to support concurrent access 
(multiple threads operating on data at the same time)

Writing correct and efficient multithreaded code is often much 
more difficult than for single-threaded (i.e., sequential) code
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A simplified view of history

From roughly 1980-2005, desktop computers got exponentially 
faster at running sequential programs

– About twice as fast every couple years

But nobody knows how to continue this

– Increasing clock rate generates too much heat

– Relative cost of memory access is too high

– But we can keep making “wires exponentially smaller”
(Moore’s “Law”), so put multiple processors on the same 
chip (“multicore”)
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What to do with multiple processors?

• Next computer you buy will likely have 4 processors

– Wait a few years and it will be 8, 16, 32, …

– The chip companies have decided to do this (not a “law”)

• What can you do with them?

– Run multiple totally different programs at the same time
• Already do that? Yes, but with time-slicing

– Do multiple things at once in one program

• Our focus – more difficult

• Requires rethinking everything from asymptotic 
complexity to how to implement data-structure operations
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Parallelism vs. Concurrency
Note: These terms are not yet standard, but the difference in 

perspective is essential
– Many programmers confuse them
– Remember that Parallelism != Concurrency

Parallelism :  Use more resources for a faster answer
Concurrency :  Correctly and efficiently allow simultaneous access 

to something (memory, printer, etc.)

There is some connection:
– Many programmers use threads for both
– If parallel computations need access to shared resources, 

then something needs to manage the concurrency

CSE332: Next few lectures on parallelism, then a few on 
concurrency
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Parallelism Example
Parallelism: Increasing throughput by using additional computational 

resources (code running simultaneously on different processors)

Example in pseudocode (not Java, yet): sum elements of an array
– No such ‘FORALL’ construct, but we’ll see something similar
– If you had 4 processors, might get roughly 4x speedup
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int sum(int[] arr ){
res = new int[4];
len = arr.length;
FORALL( i =0; i < 4; i++) { //parallel iterations

res[i] = help(arr,i*len/4,(i+1)*len/4);
}
return res[0]+res[1]+res[2]+res[3];

}
int help (int[] arr , int lo , int hi ) {

result = 0;
for ( j =lo; j < hi; j++)

result += arr[j];
return result;

}

Concurrency Example
Concurrency: Allowing simultaneous or interleaved access to shared 

resources from multiple clients
Ex: Multiple threads accessing a hash-table, but not getting in each others’ ways

Example in pseudocode (not Java, yet): chaining hashtable
– Essential correctness issue is preventing bad interleavings
– Essential performance issue not preventing good concurrency

• One ‘solution’ to preventing bad inter-leavings is to do it all sequentially
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class Hashtable <K, V> {
…
Hashtable (Comparator<K> c, Hasher<K> h) { … };
void insert (K key , V value ) {

int bucket = …;
prevent-other-inserts/lookups in table[bucket];
do the insertion
re-enable access to arr[bucket];

}
V lookup (K key ) {

(like insert, but can allow concurrent 
lookups to same bucket)

}
}

A cooking analogy

CS142 idea: Writing a program is like writing a recipe for a cook

– One cook who does one thing at a time!

Parallelism: (Let’s get the job done faster!)

– Have lots of potatoes to slice? 

– Hire helpers, hand out potatoes and knives
– But we can go too far: if we had 1 helper per potato, we’d 

spend too much time coordinating

Concurrency: (We need to manage a shared resource)

– Lots of cooks making different things, but only 4 stove burners

– Want to allow simultaneous access to all 4 burners, but not 
cause spills or incorrect burner settings
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Shared memory with Threads

The model we will assume is shared memory with explicit threads

Old story: A running program has

– One call stack (with each stack frame holding local variables) 

– One program counter (aka pc = current statement executing)
– Static fields
– Objects (created by new) in the heap (nothing to do with heap 

data structure)

New story:
– A set of threads, each with its own call stack & program counter

• No access to another thread’s local variables

– Threads can (implicitly) share static fields / objects

• To communicate, write values to some shared location that  
another thread reads from
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Old Story : one call stack, one pc 
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…

Heap for all objects 
and static fields•Call stack with local variables

•pc determines current statement
•local variables are numbers/null 
or heap references

pc=0x…

…
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New Story: Shared memory with Threads 
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…

Heap for all objects 
and static fields, shared
by all threads

Threads , each with own unshared
call stack and “program counter”

pc=0x…

…

pc=0x…

…

pc=0x…

…

Other models

We will focus on shared memory, but you should know several 
other models exist and have their own advantages

• Message-passing: Each thread has its own collection of objects.  
Communication is via explicit messages; language has 
primitives for sending and receiving them.

– Cooks working in separate kitchens, emailing back and forth

• Dataflow: Programmers write programs in terms of a DAG and a 
node executes after all of its predecessors in the graph

– Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like “apply function 
to every element of an array in parallel”

• …
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Some Java basics
• Many languages/libraries provide primitives for creating threads and 

synchronizing them

• We will show you how Java does it

– For parallelism, will advocate not using Java’s built-in threads 
directly, but it’s still worth seeing them first

• Steps to creating another thread:
1. Define a subclass C of java.lang.Thread , overriding run()

2. Create an object of class C

3. Call that object’s start() method
• The code that called start() will continue to execute after 

start() is called

• A new thread will be created, with code executing in the 
object’s run() method

• What happens if, for step 3, we called run() instead of start() ?
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Parallelism idea

• Example: Sum elements of an array (presumably large)

• Use 4 threads, which each sum 1/4 of the array

ans0         ans1        ans2         ans3

+
ans

• Steps:

1. Create 4 new thread objects, assigning their portion of the work
2. Call start() on each thread object to actually run it

3. Somehow ‘wait’ for threads to finish
4. Add together their 4 answers for the final result
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Partial Code for first attempt (with Threads)

int sum(int[] arr ){
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for (int i =0; i < 4; i++){ // do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for (int i =0; i < 4; i++) { // combine results

ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

• Assume SumThread’s run() simply loops through the given indices 
and adds the elements

• Overall, should work, but not ideal
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Sum elements of an array

• Each thread learns what part of the array to sum by the parameters 
passed to the constructor when its SumThread object is created:

• ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
• ts[i].start(); // this calls run on each thread

• Each thread sets its own .ans field in its SumThread object

ts[0].ans   ts[1].ans    ts[2].ans    ts[3].ans 

+
ans = ts[0].ans + ts[1].ans + ts[2].ans + ts[3].ans  
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Join: Our ‘wait’ method for Threads

• The Thread class defines various methods that provide the 
threading primitives you could not implement on your own
– For example: start , which calls run in a new thread

• The join method is another such method, essential for 
coordination in this kind of computation

– Caller blocks until/unless the receiver is done executing 
(meaning its run returns)

– If we didn’t use join, we would have a ‘race condition’ (more on 
these later) on ts[i].ans

• Essentially, if it’s a problem if any variable can be 
read/written simultaneously

• This style of parallel programming is called “fork/join”

– If we write in this style, we avoid many concurrency issues

19

Complete Code (correct in spirit)
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class SumThread extends java.lang.Thread {
int lo , int hi , int[] arr ; //fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int l , int h) { 

lo=l; hi=h; arr=a;
}
public void run (){ //overriding, must have this type

for (int i =lo; i < hi; i++) //sum my part of the array
this.ans += arr[i];

}
}
class C {

static int sum(int[] arr ){
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for (int i =0; i < 4; i++){ //do parallel computations

ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // (start not run!)

}
for (int i =0; i < 4; i++) { // combine results

ts[i].join(); // wait for all 4 threads to
// finish their run method

ans += ts[i].ans; // as a thread finishes, add 
// their ans to overall ans

}
return ans;

} }

Shared memory?

• Fork-join programs (thankfully) don’t require a lot of focus on sharing 
memory among threads

• But in languages like Java, there is memory being shared.  
In our example:
– lo , hi , arr fields written by “main” thread, read by helper thread

– ans field written by helper thread, read by “main” thread

• When using shared memory, you must avoid race conditions
– While studying parallelism, we’ll stick with join

– With concurrency, we’ll learn other ways to synchronize
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Problems with our current approach
The above method would work, but we can do better for several reasons:

1. Want code to be reusable and efficient across platforms
– Be able to work for a variable number of processors (not just 

hardcoded to 4); ‘forward portable’

2. Even with knowledge of # of processors on the machine, we should be able 
to use them more dynamically

– This program is unlikely to be the only one running; shouldn’t assume 
it gets all the resources (processors)

– # of ‘free’ processors is likely to change over the course of time; be 
able to adapt

3. Different threads may take significantly different amounts of time (unlikely 
for sum, but common in many cases)
– Example: Apply method f to every array element, but maybe f is 

much slower for some data items than others; say, verifying primes 
will take much longer for big values than for small values

– If we create 4 threads and all the slow data is processed by 1 of them, 
we won’t get nearly a 4x speedup (‘load imbalance’)
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Improvements

The perhaps counter-intuitive solution to all these problems is to cut up our 
problem into many pieces, far more than the number of processors
– Idea: When processor finishes one piece, it can start another
– This will require changing our algorithm somewhat

ans0         ans1          … ansN

ans

1. Forward-portable : Lots of threads each doing a small piece

2. Processors available used well : Hand out threads as you go

• Processors pick up new piece when done with old

3. Load imbalance : No problem if slow thread scheduled early enough
• Variation probably small anyway if pieces of work are small
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Naïve algorithm doesn’t work

• Suppose we create 1 thread to process every 100 elements
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int sum(int[] arr ){
…
// How many pieces of size 100 do we have?
int numThreads = arr.length / 100;
SumThread[] ts = new SumThread[numThreads];
…

}

• Then combining results will have: 
numThreads = arr.length / 100 
additions to do – linear in size of array (before we only had 4 
pieces  Ө(1) to combine)

• In the extreme, suppose we create one thread per element – If 
we use a for loop to combine the results, we have N iterations 

• In either case we get a Ө(N) algorithm with the combining of 
results as the bottleneck….



A better idea for combining… look familiar?

• Start with full problem at root

• Halve and make new thread until size is at some cutoff

• Combine answers in pairs as we return

• This will start small, and ‘grow’ threads to fit the problem

• This is straightforward to implement using divide-and-conquer

+ + + + + + + +

+ + + +

+ +
+
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Remember Mergesort?

8  2   9   4 5   3   1   6

8   2 1   69   4 5   3

8 2

2   8

2   4   8   9

1   2   3   4   5   6   8   9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4    9 3   5 1   6

1   3   5   6
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Divide-and-conquer really works
• The key is divide-and-conquer parallelizes the result-combining

– If you have enough processors, total time is depth of the tree : 
O(log n) (optimal, exponentially faster than sequential O(n))

– Next lecture: study reality of P < O(n) processors

• Will write all our parallel algorithms in this style
– But using a special library designed for exactly this

• Takes care of scheduling the computation well

– Often relies on operations being associative like +

27

+ + + + + + + +

+ + + +

+ +
+

Thread: sum range [0,10)
Thread: sum range [0,5)

Thread: sum range [0,2) 
Thread: sum range [0,1) (return arr[0])
Thread: sum range [1,2) (return arr[1])
add results from two helper threads

Thread: sum range [2,5)
Thread: sum range [2,3) (return arr[2])
Thread: sum range [3,5)

Thread: sum range [3,4) (return arr[3])
Thread: sum range [4,5) (return arr[4])
add results from two helper threads

add results from two helper threads
add results from two helper threads

Thread: sum range [5,10)
Thread: sum range [5,7)

Thread: sum range [5,6) (return arr[5])
Thread: sum range [6,7) (return arr[6])
add results from two helper threads

Thread: sum range [7,10)
Thread: sum range [7,8) (return arr[7])
Thread: sum range [8,10)

Thread: sum range [8,9) (return arr[8])
Thread: sum range [9,10) (return arr[9])
add results from two helper threads

add results from two helper threads
add results from two helper threads

28

Example: summing 
an array with 10 elements. 
(too small to actually want to 

use parallelism)

The algorithm produces the 
following tree of recursion, 
where the range  [i,j) 
includes i and excludes j:

Code looks something like this (still using Java Threads)

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!
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class SumThread extends java.lang.Thread {
int lo ; int hi ; int[] arr ; //fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int l , int h) { … }
public void run (){

if (hi – lo < SEQUENTIAL_CUTOFF)
for (int i =lo; i < hi; i++)

ans += arr[i];
else { // create 2 threads, each will do ½ the work

SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right = new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
class C {

static int sum(int[] arr ){ 
SumThread t = new SumThread(arr,0,arr.length);
t.run(); // only creates one thread
return t.ans;

}
}

Being realistic

• In theory, you can divide down to single elements, do all your 
result-combining in parallel and get optimal speedup
– Total time O(n/numProcessors + log n)

• In practice, creating all that inter-thread communication swamps the 
savings, so we will try to limit the creation of threads two ways:

1. Use a sequential cutoff, typically around 500-1000

• As in quicksort, eliminates almost all recursion, but here it 
is even more important

2. Don’t create two recursive threads; create one and do the other 
“yourself”

• Cuts the number of threads created by another 2x
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Half the threads!

• If a language had built-in support for fork-join parallelism, I 
would expect this hand-optimization to be unnecessary

• But the library we are using expects you to do it yourself

– And the difference is surprisingly substantial
• Again, no difference in theory
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// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join(); 
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines
Is critical – why?

Note: run is a 
normal function call!
execution won’t 
continue until we 
are done with run

That library, finally

• Even with all this care, Java’s threads are too “heavy-weight”
– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea �

• The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism
– Will be in Java 7 standard libraries, but available in Java 6 as a 

downloaded .jar file

– Section will focus on pragmatics/logistics

– Similar libraries available for other languages 
• C/C++: Cilk (inventors), Intel’s Thread Building Blocks

• C#: Task Parallel Library

• …

– Library’s implementation is a fascinating but advanced topic
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Different terms, same basic idea

To use the ForkJoin Framework:
• A little standard set-up code (e.g., create a ForkJoinPool )

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join which returns answer

Don’t call run to hand-optimize Do call compute to hand-optimize

Java Threads ForkJoin Framework
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Example: final version in ForkJoin Framework 
(missing imports)
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class SumArray extends RecursiveTask<Integer> {
int lo ; int hi ; int[] arr ; //fields to know what to do
SumArray(int[] a, int l , int h) { … }
protected Integer compute (){ // return answer

if (hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0;
for (int i =lo; i < hi; i++)

ans += arr[i];
return ans;

} else {
SumArray left = new SumArray(arr,lo,(hi+lo)/2);
SumArray right = new SumArray(arr,(hi+lo)/2,hi);
left.fork();
int rightAns = right.compute();
int leftAns = left.join(); 
return leftAns + rightAns;

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr ){

return fjPool.invoke( new SumArray(arr,0,arr.length));
}

For comparison - Java Threads Version

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!
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class SumThread extends java.lang.Thread {
int lo ; int hi ; int[] arr ; //fields to know what to do
int ans = 0; // for communicating result
SumThread(int[] a, int l , int h) { … }
public void run (){

if (hi – lo < SEQUENTIAL_CUTOFF)
for (int i =lo; i < hi; i++)

ans += arr[i];
else { // create 2 threads, each will do ½ the work

SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right = new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
class C {

static int sum(int[] arr ){ 
SumThread t = new SumThread(arr,0,arr.length);
t.run(); // only creates one thread
return t.ans;

}
}

Getting good results in practice

• Sequential threshold
– Library documentation recommends doing approximately  100-

5000 basic operations in each “piece” of your algorithm

• Library needs to “warm up”

– May see slow results before the Java virtual machine re-optimizes 
the library internals 

– When evaluating speed, put your computations in a loop to see 
the “long-term benefit” after these optimizations have occurred 

• Wait until your computer has more processors ☺

– Seriously, overhead may dominate at 4 processors, but parallel 
programming is likely to become much more important

• Beware memory-hierarchy issues 
– Won’t focus on this, but often crucial for parallel performance
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