

## Announcements

- Homework 4 - due Monday Feb $14^{\text {th }}$ at the BEGINNING of lecture
- Project 2 - Phase B due Tues Feb $15^{\text {th }}$ at 11 pm
- Clarifications posted, check Msg board, email cse332-staff


## Single source shortest paths

- Done: BFS to find the minimum path length from $\mathbf{v}$ to $\mathbf{u}$ in O(|E|+(|V|)
- Actually, can find the minimum path length from $\mathbf{v}$ to every node - Still $O(|\mathrm{E}|+(|\mathrm{V}|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node $\mathbf{v}$, find the minimum-cost path from $\mathbf{v}$ to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

2/11/2011

## Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
- Truly one of the "founders" of computer science; this is just one of his many contributions
- Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
- A priority queue will prove useful for efficiency (later)
- Will grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- Problem is ill-defined if there are negative-cost cycles
- Next algorithm we will learn is wrong if edges can be negative

Dijkstra's Algorithm: Idea


- Initially, start node has cost 0 and all other nodes have cost $\infty$
- At each step:
- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from $\mathbf{v}$
- That's it! (Have to prove it produces correct answers)

2/11/2011

## The Algorithm

For each node $\mathbf{v}$, set $\mathbf{v}$.cost $=\infty$ and $\mathbf{v}$. known $=$ false
Set source. cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node $\mathbf{v}$ with lowest cost
b) Mark v as known
c) For each edge ( $\mathbf{v}, \mathbf{u}$ ) with weight $\mathbf{w}$
$\mathbf{c 1}=\mathbf{v} \cdot \operatorname{cost}+\mathbf{w} / /$ cost of best path through $\mathbf{v}$ to $\mathbf{u}$ $\mathbf{c 2}=\mathbf{u}$. cost // cost of best path to $\mathbf{u}$ previously known
if ( $\mathbf{c 1}<\mathrm{c} 2$ ) $\{$ // if the path through v is better
u.cost $=c 1$
$\mathbf{u} \cdot$ path $=\mathbf{v} / /$ for computing actual paths
\}
2/11/2011

Example \#1


| vertex | known? | cost | path |
| :---: | :---: | :---: | :---: |
| A |  |  |  |
| B |  |  |  |
| C |  |  |  |
| D |  |  |  |
| E |  |  |  |
| F |  |  |  |
| G |  |  |  |
| H |  |  |  |

## Example \#1



2/11/2011

Example \#1
$2 / 11 / 2011$





## Important features

- Once a vertex is marked 'known', the cost of the shortest path to that node is known
- As is the path itself
- While a vertex is still not known, another shorter path to it might still be found

| Interpreting the results |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - Now that we're done, how do we get the path from, say, A to E? |

Stopping Short
How would this have worked differently if we were only interested in
the path from A to G ?

- A to E ?

| vertex | known? | cost | path |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0 |  |
| B |  | $? ?$ |  |
| C |  | $? ?$ |  |
| D |  | $? ?$ |  |
| E |  | $? ?$ |  |
| F |  | $? ?$ |  |
| G |  | $? ?$ |  |

## Example \#2



| vertex | known? | cost | path |
| :---: | :---: | :---: | :---: |
| A | Y | 0 |  |
| B |  | $? ?$ |  |
| C |  | $\leq 2$ | A |
| D |  | $\leq 1$ | A |
| E |  | $? ?$ |  |
| F |  | $? ?$ |  |
| G |  | $? ?$ |  |


| Example \#2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 2.6 (G ${ }^{6}$ | vertex | known? | cost | path |
| (F)- | A | Y | 0 |  |
|  | B |  | $\leq 6$ | D |
|  | c |  | $\leq 2$ | A |
|  | D | Y | 1 | A |
|  | E |  | $\leq 2$ | D |
|  | F |  | $\leq 7$ | D |
|  | G |  | $\leq 6$ | D |
| 2112011 |  |  |  | 25 |



## Example \#3



How will the best-cost-so-far for Y proceed?
Is this expensive?


How will the best-cost-so-far for Y proceed? $90,81,72,63,54, \ldots$
Is this expensive? No, each edge is processed only once

## Where are we?

- Have described Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: The Cloud (Rough Idea)


Suppose $\mathbf{v}$ is the next node to be marked known ("added to the cloud")

- The best-known path to $\mathbf{v}$ must have only nodes "in the cloud"
- Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to $\mathbf{v}$ is differen
- It won't use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
Let $\mathbf{w}$ be the first non-cloud node on this path
- The part of the path up to $\mathbf{w}$ is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction. 2/11/201


## Efficiency, first approach

```
    Use pseudocode to determine asymptotic run-time
        - Notice each edge is processed only once
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight ((b,a))
                    a.path = b
                }
}
    2/11/2011
37
```


## Efficiency, first approach

Use pseudocode to determine asymptotic run-time - Notice each edge is processed only once
$\left.\begin{array}{l}\text { dijkstra(Graph G, Node start) } 1 \\ \text { for each node: x.cost=infinity, x.known=false }\end{array}\right\}-\mathrm{O}(|\mathrm{V}|)$ start.cost $=0$
while (not all nodes are known)
$\mathrm{b}=$ find unknown node with smallest cost
b. known = true
for each edge ( $b, a$ ) in $G$
if (!a.known)
if (b.cost + weight ((b, a)) < a.cost) \{
a.cost $=\mathrm{b} . \operatorname{cost}+$ weight $((\mathrm{b}, \mathrm{a}))$
a. path $=$ b
$\}$

2/11/2011

## Improving (?) asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its position in the priority queue
- Conceptually simple, but can be a pain to code up


## Dense vs. sparse again

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $O(|\mathrm{E}| \log |\mathrm{V}|)$ )
- Dense: $O\left(|V|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreasekey rarely (or not percolate far), making $|\mathrm{E}| \mathrm{log}|\mathrm{V}|$ more like |E|


## What comes next?

In the logical course progression, we would next study

1. All-pairs-shortest paths
2. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will

- Start parallelism and concurrency
- Come back to graphs at the end of the course
- We might skip (1) except to point out where to learn more

Note toward the future:

- We can't do all of graphs last because of the CSE312 corequisite (needed for study of NP)
2/11/2011


## Efficiency, first approach

Use pseudocode to determine asymptotic run-time - Notice each edge is processed only once
$\left.\begin{array}{l}\text { dijkstra(Graph G, Node start) }\{ \\ \text { for each node: x.cost=infinity, x.known=false }\end{array}\right]$
for each node: x.cost=infinity, $x$.known=false
start.cost $=0$
while (not all nodes are known) $\{$
$\mathrm{b}=$ find unknown node with smallest cost
b. known = true
for each edge ( $b, a$ ) in $G$
if(!a.known)
if (b.cost + weight $((b, a))<a . c o s t)$ \{
a.cost $=b \cdot \cos t+\operatorname{weight}((b, a))$
a. path $=\mathrm{b}$
\}
\}
2/11/2011

## Example \#1

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | vertex | known? | cost | path |
|  | A |  |  |  |
|  | B |  |  |  |
|  | C |  |  |  |
| Order Added to Known Set: | D |  |  |  |
|  | E |  |  |  |
|  | F |  |  |  |
|  | G |  |  |  |
|  | H |  |  |  |
| 2/11/2011 |  |  |  | 45 |

