

CSE332: Data Abstractions Lecture 16: Shortest Paths

> Ruth Anderson Winter 2011

Announcements

- Homework 4 due Monday Feb 14th at the BEGINNING of lecture
- Project 2 Phase B due Tues Feb 15th at 11pm
 - Clarifications posted, check Msg board, email cse332-staff

2/11/2011

Today

- Graphs
 - Graph Traversals
 - Shortest Paths

2/11/2011

/2011

Single source shortest paths

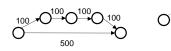
- Done: BFS to find the minimum path length from \boldsymbol{v} to \boldsymbol{u} in O(|E|+(|V|)
- Actually, can find the minimum path length from \boldsymbol{v} to every node
 - Still O(|E|+(|V|
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node ${\bf v}$, find the minimum-cost path from ${\bf v}$ to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

2/11/2011

Not as easy



Why BFS won't work: Shortest path may not have the fewest edges

— Annoying when this happens with costs of flights

We will assume there are no negative weights

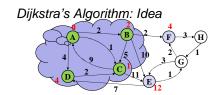
- Problem is ill-defined if there are negative-cost cycles
- Next algorithm we will learn is wrong if edges can be negative

2/11/2011 5

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science; this is just one of his many contributions
 - Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
 - A priority queue will prove useful for efficiency (later)
 - Will grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"

2/11/2011 6



- Initially, start node has cost 0 and all other nodes have cost ∞
- · At each step:
 - Pick closest unknown vertex **v**
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from \boldsymbol{v}
- That's it! (Have to prove it produces correct answers)

2/11/2011

7

The Algorithm

- 1. For each node v, set $v \cdot cost = \infty$ and $v \cdot known = false$
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known

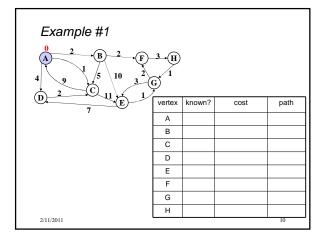
2/11/2011

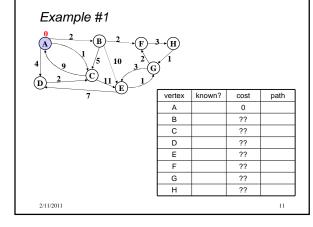
c) For each edge (v,u) with weight w,

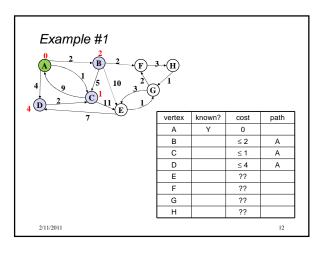
```
c1 = v.cost + w// cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2){ // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}</pre>
```

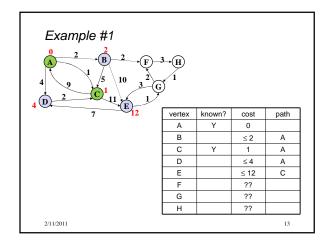
Important features

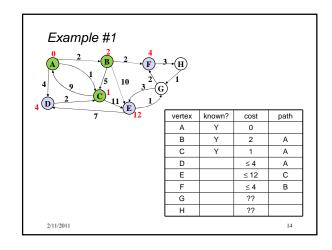
- Once a vertex is marked known, the cost of the shortest path to that node is known
 - As is the path itself
- While a vertex is still not known, another shorter path to it might still be found

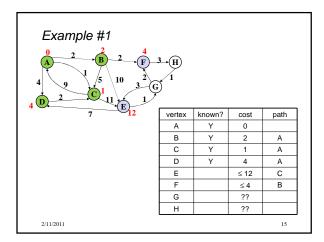


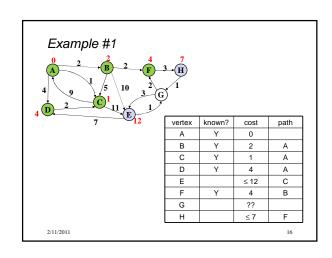


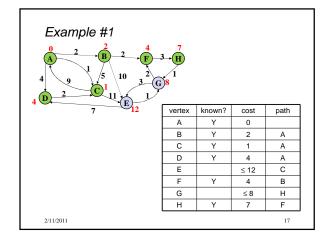


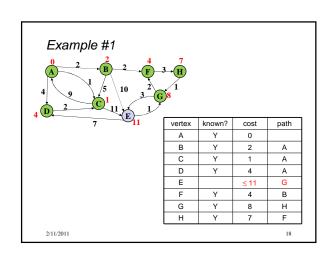


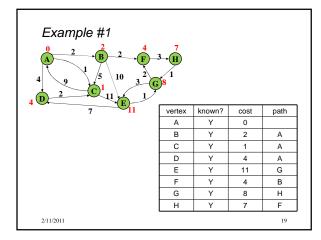












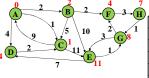
Important features

- Once a vertex is marked 'known', the cost of the shortest path to that node is known
 - As is the path itself
- While a vertex is still not known, another shorter path to it might still be found

2/11/2011 20

Interpreting the results

• Now that we're done, how do we get the path from, say, A to E?



vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

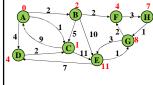
21

2/11/2011

Stopping Short

 How would this have worked differently if we were only interested in the path from A to G?

- A to E?



١.				
	vertex	known?	cost	path
ſ	Α	Υ	0	
ſ	В	Υ	2	Α
ſ	С	Y	1	Α
ſ	D	Y	4	Α
ſ	E	Υ	11	G
ſ	F	Y	4	В
ľ	G	Υ	8	Н
ſ	Н	Υ	7	F

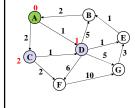
22

2/11/2011

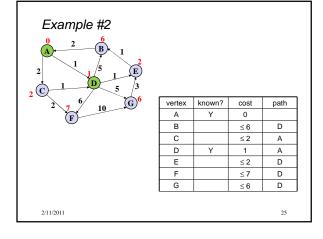


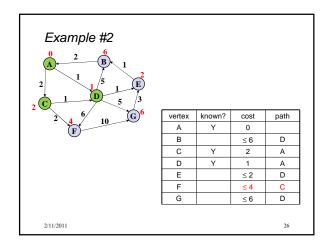
vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

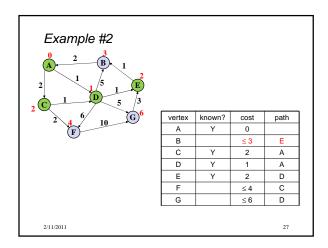
2/11/2011

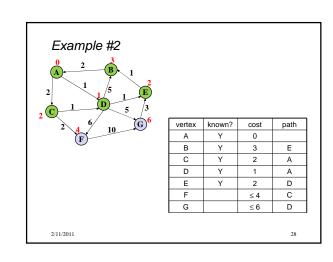


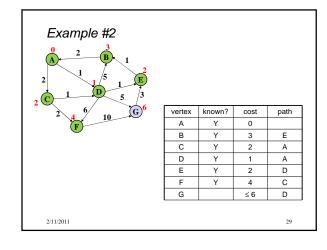
vertex	known?	cost	path
Α	Y	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
Е		??	
F		??	
G		??	

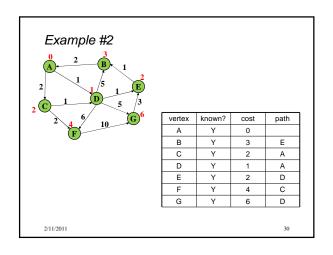




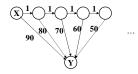








Example #3



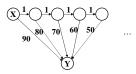
31

How will the best-cost-so-far for Y proceed?

Is this expensive?

2/11/2011

Example #3



How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, \dots

Is this expensive? No, each edge is processed only once

2/11/2011 32

A Greedy Algorithm

- Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
 - An example of a greedy algorithm:
 - at each step, irrevocably does what seems best at that step (once a vertex is in the known set, does not go back and readjust its decision)
 - · Locally optimal does not always mean globally optimal

2/11/2011 33

Where are we?

- · Have described Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- · What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

2/11/2011 34

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

2/11/2011

Correctness: The Cloud (Rough Idea)

Suppose ${\bf v}$ is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
- Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to v is different
 - It won't use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
 - Let ${\bf w}$ be the ${\it first}$ non-cloud node on this path.
- The part of the path up to **w** is already known and must be shorter than the best-known path to **v**. So **v** would not have been picked. Contradiction.

```
Efficiency, first approach
 Use pseudocode to determine asymptotic run-time
      - Notice each edge is processed only once
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
     b = find unknown node with smallest cost
     b.known = true
     for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
  a.cost = b.cost + weight((b,a))</pre>
          a.path = b
}
 2/11/2011
                                                           37
```

```
Efficiency, first approach
 Use pseudocode to determine asymptotic run-time

    Notice each edge is processed only once

dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
                                                           O(|V|^2)
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
  a.cost = b.cost + weight((b,a))</pre>
                                                           O(|E|)
          a.path = b
                                                          O(|V|^2)
 2/11/2011
```

Improving asymptotic running time

- So far: O(|V|²)
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?

2/11/2011

39

Improving (?) asymptotic running time

- So far: O(|V|²)
- We had a similar "problem" with topological sort being O(|V|²) due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its position in the priority queue
 - Conceptually simple, but can be a pain to code up

2/11/2011

40

Efficiency, second approach Use pseudocode to determine asymptotic run-time dijkstra(Graph G, Node start) { for each node: x.cost=infinity, x.known=false start.cost = 0 build-heap with all nodes while(heap is not empty) { O(|V|log|V|) b = deleteMin() b.known = true for each edge (b,a) in G if(!a.known) if(b.cost + weight((b,a)) < a.cost){</pre> O(|E|log|V|) decreaseKey(a, "new cost - old cost" O(|V|log|V|+|E|log|V|)2/11/2011

Dense vs. sparse again

- First approach: O(|V|²)
- Second approach: O(|V|log|V|+|E|log|V|)
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: O(|V|2)
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

What comes next?

In the logical course progression, we would next study

- 1. All-pairs-shortest paths
- 2. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will

- · Start parallelism and concurrency
- Come back to graphs at the end of the course
 - We might skip (1) except to point out where to learn more

Note toward the future:

 We can't do all of graphs last because of the CSE312 corequisite (needed for study of NP)

