

CSE332: Data Abstractions
Lecture 13: Beyond Comparison Sorting

Ruth Anderson Winter 2011

Announcements

- Project 2 Phase A due TONIGHT Wed Feb 2nd at 11pm
 - Clarifications posted, check Msg board, email cse332-staff
 - Office Hours today after class
- (No homework due Friday)

2/02/2011

2/02/2011

- Midterm Monday Feb 7th during lecture, info about midterm has been posted, review in section on Thurs
- Homework 4 due Friday Feb 11th at the BEGINNING of lecture, posted soon

Today

- Sortine
 - Comparison sorting
 - Beyond comparison sorting

2/02/2011 3

The Big Picture Comparison Specialized Handling Simple Fancier lower bound: algorithms: algorithms: algorithms: huge data $O(n \log n)$ $\Omega(n \log n)$ O(n)Insertion sort Heap sort Bucket sort External Selection sort Merge sort Radix sort Shell sort Quick sort (avg)

How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: prove that this is impossible
 - Assuming our comparison model. The only operation an algorithm can perform on data items is a 2-element comparison

2/02/2011 5

A Different View of Sorting

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, *n*=3,

2/02/2011

A Different View of Sorting

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- · How many permutations (possible orderings) of the elements?
- Example, *n*=3, six possibilities

```
      a[0]<a[1]<a[2]</td>
      a[0]<a[2]<a[1]</td>
      a[1]<a[0]<a[2]<</td>

      a[1]<a[2]<a[0]</td>
      a[2]<a[0]<a[1]</td>
      a[2]<a[1]<a[0]</td>
```

- In general, n choices for least element, then n-1 for next, then n-2 for next....
 - n(n-1)(n-2)...(2)(1) = n! possible orderings

2/02/2011

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison, eliminating some possiblities
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility

2/02/2011

Representing the Sort Problem

- Can represent this sorting process as a <u>decision tree</u>:
 - Nodes are sets of "remaining possibilities"
 - At root, anything is possible; no option eliminated
 - Edges represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
 - Ex: Say we need to know whether a<b or b<a; our root for n=2
 - A comparison between a & b will lead to a node that contains only one possibility (either a<b or b<a)

Note: This tree is not a data structure, it's what our proof uses to represent "the most any algorithm could know"

2/02/2011

The leaves contain all the possible orderings of a, b, c

2/02/2011

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn't ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will <u>at best</u> correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n! leaves

- Turns out average-case is same asymptotically
- Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height $\Omega(n \log n)$

- That is, n log n is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is Ω ($n \log n$)

This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time!
2022011

...

15

Lower bound on Height

 A binary tree of height h has at most how many leaves?

L ≤ _____

A binary tree with L leaves has height at least:

h ≥

The decision tree has how many leaves:

• So the decision tree has height:

h ≥_____

2/02/2011

Lower bound on Height

 A binary tree of height h has at most how many leaves?

L ≤ 2

• A binary tree with L leaves has height at least:

 $h \ge \log_2 L$

• The decision tree has how many leaves: N!

• So the decision tree has height:

 $h \ge \log_2 N!$

2/02/2011

Lower bound on height

- The height of a binary tree with L leaves is at least log₂ L
- So the height of our decision tree, h:

$$\begin{split} &h \geq \log_2\left(n!\right) & \text{property of binary trees} \\ &= \log_2\left(n^*(n\text{-}1)^*(n\text{-}2)\dots(2)(1)\right) & \text{definition of factorial} \\ &= \log_2 n + \log_2\left(n\text{-}1\right) + \dots + \log_2 1 & \text{property of logarithms} \\ &\geq \log_2 n + \log_2\left(n\text{-}1\right) + \dots + \log_2\left(n\text{/}2\right) & \text{keep first } n\text{/}2 \text{ terms} \\ &\geq \left(n\text{/}2\right) \log_2\left(n\text{/}2\right) & \text{each of the } n\text{/}2 \text{ terms left is} \geq \log_2\left(n\text{/}2\right) \end{split}$$

= $(n/2)(\log_2 n - \log_2 2)$ = $(1/2)n\log_2 n - (1/2)n$ property of logarithms
arithmetic

"=" Ω ($n \log n$)

2/02/2011 16

The Big Picture Fancier Comparison Specialized Handling Simple algorithms: algorithms: lgorithm huge data lower bound: $O(n^2)$ $O(n \log n)$ $\Omega(n \log n)$ O(n)sets Insertion sort Heap sort External Selection sort Merge sort Radix sort Shell sort Quick sort (avg) How??? · Change the model - assume more than 'compare(a,b)' 2/02/2011

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don't even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array		Example:		
1		K=5		
2		Input: (5,1,3,4,3,2,1,1,5,4,5) output:		
3				
4				
5				

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don't even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

	count array		
	1	3	
	2	1	
	3	2	
	4	2	
	5	3	

Example:
 K=5

input (5,1,3,4,3,2,1,1,5,4,5) output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

2/02/2011

count array

19

Analyzing bucket sort

- Overall: O(n+K)
 - Linear in n, but also linear in K
 - Ω(n log n) lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than number of elements, n
 - We don't spend time doing lots of comparisons of duplicates!
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear O(K) pass
- · For data in addition to integer keys, use list at each bucket

2/02/2011 20

Bucket Sort with Data

- Most real lists aren't just #'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in O(1) (say, keep a pointer to last element)

- Example: Movie ratings; scale 1-5;1=bad, 5=excellent Input=
 - 5: Casablanca
 - 3: Harry Potter movies

21

- 5: Star Wars Original
- Trilogy
- 1: Rocky V
- •Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- $\bullet This\ result\ is\ `stable';\ Casablanca\ still\ before\ Star\ Wars$

2/02/2011

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After \emph{k} passes, the last \emph{k} digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Student Activity RadixSort • Input:126, 328, 636, 341, 416, 131, 328 BucketSort on lsd: 0 1 9 BucketSort on next-higher digit: 2 4 5 6 9 BucketSort on msd: 0 1 3 5 6 9

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
 - e.g. Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: _____
- Each pass is a Bucket Sort
- Total work is __
 - We do 'P' passes, each of which is a Bucket Sort

2/02/2011

27

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
 - Ages of people: 3; Phone #: 10; Person's name: ?
- Work per pass is 1 bucket sort: O(B+n)
 - Each pass is a Bucket Sort
- Total work is O(P(B+n))
 - We do 'P' passes, each of which is a Bucket Sort

2/02/2011 28

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Approximate run-time: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations plus *P* and *B*
 - And radix sort can have poor locality properties
- Not really practical for many classes of keys
 - Strings: Lots of buckets

2/02/2011 29

Features of Sorting Algorithms

In-place

Sorted items occupy the same space as the original items.
 (No copying required, only O(1) extra space if any.)

Stable

 Items in input with the same value end up in the same order as when they began.

Examples

Merge Sort - not in place, stable

Quick Sort - in place, not stable

Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- **Ω** (*n* log *n*) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

2/02/2011

31