

Announcements

- Project 2 - Phase A due TONIGHT - Wed Feb $2^{\text {nd }}$ at 11 pm - Clarifications posted, check Msg board, email cse332-staff - Office Hours today after class
- (No homework due Friday)
- Midterm - Monday Feb $7^{\text {th }}$ during lecture, info about midterm has been posted, review in section on Thurs
- Homework 4 - due Friday Feb $11^{\text {th }}$ at the BEGINNING of lecture, posted soon

How fast can we sort?

- Heapsort \& mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- Instead: prove that this is impossible
- Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A Different View of Sorting

- Assume we have n elements to sort
- And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$,

A Different View of Sorting

- Assume we have n elements to sort
- And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$, six possibilities
$a[0]<a[1]<a[2] \quad a[0]<a[2]<a[1] \quad a[1]<a[0]<a[2]$
$a[1]<a[2]<a[0] \quad a[2]<a[0]<a[1] \quad a[2]<a[1]<a[0]$
- In general, n choices for least element, then $n-1$ for next, then $n-2$ for next, \ldots
- $n(n-1)(n-2) \ldots(2)(1)=n!$ possible orderings

2/02/2011

Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to "find" the right answer among the n ! possible answers
- Starts "knowing nothing", "anything is possible"
- Gains information with each comparison, eliminating some possiblities
- Intuition: At best, each comparison can eliminate half of the remaining possibilities
- In the end narrows down to a single possibility

Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with n ! leaves

- Turns out average-case is same asymptotically
- Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n ! leaves has height $\boldsymbol{\Omega}(n \log n)$

- That is, $\mathrm{n} \log \mathrm{n}$ is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won't be faster)
- Factorial function grows very quickly

Then we'll conclude that: (Comparison) Sorting is $\boldsymbol{\Omega}(n \log n)$

- This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time! 2/02/2011

Lower bound on Height

- A binary tree of height h has at most how many leaves?
$\mathrm{L} \leq$ \qquad
- A binary tree with L leaves has height at least:
h \geq \qquad
- The decision tree has how many leaves: \qquad
- So the decision tree has height:
h \geq \qquad

Lower bound on height

- The height of a binary tree with L leaves is at least $\log _{2} L$
- So the height of our decision tree, h :
$h \geq \log _{2}(n!)$
poperty of binary tree
$=\log _{2}\left(n^{*}(n-1)^{*}(n-2) \ldots(2)(1)\right) \quad$ definition of factorial
$=\log _{2} n+\log _{2}(n-1)+\ldots+\log _{2} 1 \quad$ property of logarithms
$\geq \log _{2} n+\log _{2}(n-1)+\ldots+\log _{2}(n / 2) \quad$ keep first $n / 2$ terms
$\geq(n / 2) \log _{2}(n / 2) \quad$ each of the $n / 2$ terms left is $\geq \log _{2}(n / 2)$
$=(n / 2)\left(\log _{2} n-\log _{2} 2\right) \quad$ property of logarithms
$=(1 / 2) \operatorname{nlog}_{2} n-(1 / 2) n \quad$ arithmetic
" $=$ " $\boldsymbol{\Omega}(n \log n)$

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K and put each element in its proper bucket (a.ka. bin)
- If data is only integers, don't even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

2/02/2011

- Example:
$\mathrm{K}=5$
Input: (5,1,3,4,3,2,1,1,5,4,5)
output:

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
- Create an array of size K and put each element in its proper bucket (a.ka. bin)
- If data is only integers, don't even need to store anything more than a count of how times that bucket has been used - Output result via linear pass through array of buckets

count array	
1	3
2	1
3	2
4	2
5	3

$\mathrm{K}=5$
input (5,1,3,4,3,2, 1, 1,5,4,5)
output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

2/02/2011 19

Analyzing bucket sort

- Overall: $O(n+K)$
- Linear in n, but also linear in K
$-\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than number of elements, n
- We don't spend time doing lots of comparisons of duplicates!
- Bad when K is much larger than n
- Wasted space; wasted time during final linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket 2/02/2011

Bucket Sort with Data

- Most real lists aren't just \#'s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in $\mathrm{O}(1)$ (say, keep a pointer to last element)

count array		\rightarrow Rocky V		Example: Movie ratings; scale 1-5;1=bad, 5=excellent Input=
1				
2				5: Casablanca
3		\rightarrow Harry Potter		3: Harry Potter movies
4				5: Star Wars Original Trilogy
5		\rightarrow Casablanca	Star Wars	

-Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars -This result is 'stable'; Casablanca still before Star Wars 2/02/2011 21

Radix sort

- Radix = "the base of a number system"
- Examples will use 10 because we are used to that
- In implementations use larger numbers
- For example, for ASCII strings, might use 128
- Idea:
- Bucket sort on one digit at a time
- Number of buckets = radix
- Starting with least significant digit, sort with Bucket Sort
- Keeping sort stable
- Do one pass per digit
- After k passes, the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

2022/2011

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
- e.g. Base 10 \#: 10; binary \#: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
- e.g. Ages of people: 3; Phone \#: 10; Person's name: ?
- Work per pass is 1 bucket sort.
- Each pass is a Bucket Sort
- Total work is
- We do ' P ' passes, each of which is a Bucket Sort

2/02/2011

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
- Approximate run-time: $15^{*}(52+n)$
- This is less than n log n only if $n>33,000$
- Of course, cross-over point depends on constant factors of the implementations plus P and B
- And radix sort can have poor locality properties
- Not really practical for many classes of keys
- Strings: Lots of buckets

Student Activity
RadixSort
BucketSort on Isd: Input:126, 328, 636, 341, 416, 131, 328

0	1	2	3	4	5	6	7	8	9

BucketSort on next-higher digit:

0	1	2	3	4	5	6	7	8	9

BucketSort on msd:

Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
- Base 10 \#: 10; binary \#: 2; Alpha-numeric char: 62
- Number of passes = "Digits": P
- Ages of people: 3; Phone \#: 10; Person's name: ?
- Work per pass is 1 bucket sort: $O(B+n)$
- Each pass is a Bucket Sort
- Total work is $O(P(B+n))$
- We do 'P' passes, each of which is a Bucket Sort

2/02/2011

Features of Sorting Algorithms

In-place

- Sorted items occupy the same space as the original items. (No copying required, only $\mathrm{O}(1)$ extra space if any.)

Stable

- Items in input with the same value end up in the same order as when they began.

Examples:

- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

Last word on sorting

- Simple $O\left(n^{2}\right)$ sorts can be fastest for small n
- selection sort, insertion sort (latter linear for mostly-sorted)
- good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
- heap sort, in-place but not stable nor parallelizable
- merge sort, not in place but stable and works as external sort
- quick sort, in place but not stable and $O\left(n^{2}\right)$ in worst-case
- often fastest, but depends on costs of comparisons/copies
- $\boldsymbol{\Omega}(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
- Bucket sort good for small number of key values
- Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

2/02/2011

