

Announcements

- Homework 3- due NOW!
- Project 2 - Phase A due next Wed Feb 2nd at 11 pm
- (No homework due next Friday)
- Midterm - Monday Feb $7^{\text {th }}$ during lecture
- Homework 4 - not due until Friday Feb $11^{\text {th }}$ at the BEGINNING of lecture

Hash Tables: Review

- Aim for constant-time (i.e., $O(1))$ find, insert, and delete
- "On average" under some reasonable assumptions

Hashing Choices

1. Choose a Hash function
2. Choose TableSize
3. Choose a Collision Resolution Strategy from these:

- Separate Chaining
- Open Addressing
- Linear Probing
- Quadratic Probing
- Double Hashing
- Other issues to consider:
- Deletion?
- What to do when the hash table gets "too full"?

1/28/2011

An Alternative to Separate Chaining:

 Open Addressing- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If h (key) is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try $(\mathrm{h}(\mathrm{key})+3) \%$ TableSize. If full..
- Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining. Open Addressing

- Another simple idea: If $h($ key $)$ is already full,
- try (h(key) + 1) \% TableSize. If full,
$-\operatorname{try}(\mathrm{h}($ key $)+2) \%$ TableSize. If full,
- try (h(key) + 3) \% TableSize. If full..
- Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open Addressing

- Another simple idea: If $\mathrm{h}(\mathbf{k e y})$ is already full,
- try (h(key) + 1) \% TableSize. If full,
- try (h(key) + 2) \% TableSize. If full,
- try (h(key) + 3) \% TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining: Open Addressing

- Another simple idea: If $\mathrm{h}(\mathrm{key})$ is already full,
- try (h (key) + 1) \% TableSize. If full,
$-\operatorname{try}(\mathrm{h}(\mathrm{key})+2) \%$ TableSize. If full,
- try (h(key) + 3) \% TableSize. If full.
- Example: insert 38, 19, 8, 109, 10

8
109
10
1
1
1
1
1
38
19

Open addressing

This is one example of open addressing

- More generally, we just need to describe where to check next when one attempt fails (cell already in use)
- Each version of open addressing involves specifying a sequence of indices to try
Trying the next spot is called probing
- Our $\mathbf{i}^{\text {th }}$ probe was: (h(key) +i) \% TableSize
- This is called linear probing
- In general have some probe function \mathbf{f} and use:
(h(key) $+f(i)) \%$ TableSize for the $i^{\text {th }}$ probe (start at $i=0$) - For linear probing, $f(i)=i$

Open addressing does poorly with high load factor $\boldsymbol{\lambda}$

- So want larger tables
- Too many probes means no more $O(1)$

1/28/2011

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
_ "closed hashing" is a synonym for "open addressing"

Open Addressing: Linear Probing

What about \mathbf{f} ind? If value is in table? If not there? Worst case?
What about delete?

How does open addressing with linear probing compare to separate chaining?

1/28/2011

Other operations

Okay, so insert finds an open table position using a probe function

What about find?

- Must use same probe function to "retrace the trail" and find the data
- Unsuccessful search when reach empty position

What about delete?

- Must use "lazy" deletion. Why?
- But here just means "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

Analysis of Linear Probing

- Trivial fact: For any $\boldsymbol{\lambda}<1$, linear probing will find an empty slot
- It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove

Average \# of probes given $\boldsymbol{\lambda}$ (in the limit as TableSize $\rightarrow \boldsymbol{\infty}$)

- Unsuccessful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)$
- Successful search: $\quad \frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$
- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
1/28/2011

Open Addressing: linear probing

(h (key) + f(i)) \% TableSize

- For linear probing
$f(i)=i$
- So probe sequence is:
- $0^{\text {th }}$ probe: h (key) ${ }^{\circ}$ TableSize
- $1^{\text {st }}$ probe: ($\mathrm{h}(\mathrm{key})+1$) \% TableSize
- $2^{\text {nd }}$ probe: (h (key) +2) \& Tablesize
- $3^{\text {rd }}$ probe: (h (key) + 3) \% TableSize
- ...
- ith probe: (h (key) + i) \& TableSize

Open Addressing: Quadratic probing

- We can avoid primary clustering by changing the probe function...
(h(key) + f(i)) \% TableSize
- For quadratic probing:
$f(i)=i^{2}$
- So probe sequence is:
- $0^{\text {th }}$ probe: \mathbf{h} (key) \& TableSize
- $1^{\text {tt }}$ probe: (h (key) + 1) \% TableSize
- $2^{\text {nd }}$ probe: (h (key) + 4) \% TableSize
- $3^{\text {rd }}$ probe: (h (key) + 9) \% Tablesize
-...
- ith probe: (h(key) + i²) \% TableSize
- Intuition: Probes quickly "leave the neighborhood"

1/28/2011
19

Quadratic Probing Example

0	
2	
3	
4	
5	
6	
7	
8	
9	89

TableSize=10
Insert:
89
18
49
58
58
79

89
TableSize=10 Insert:
89
18
49
58
79
\square

Quadratic Probing Example

0	49
1	
2	
3	
4	
5	
6	
7	
8	18
9	89

TableSize=10
Insert:
89
18
49
58
79

89

ith probe: ($\mathrm{h}\left(\mathrm{key}\right.$) $+\mathrm{i}^{2}$) \% TableSize Another Quadratic Probing Example			
0	TableSize $=7$		
1	Insert:		
2	76	(76\%7 = 6)	
3	40	($40 \% 7=5$)	
4	5	($5 \% 7=5$)	
5	55	($55 \% 7=6$)	
6	47	(47\% $7=5$)	
1/28/2011			26

Another Quadratic Probing Example

Another Quadratic Probing Example

0	48	TableSize $=7$	
1			
2		76	(76\% 7 = 6)
3		40	($40 \% 7=5$)
		48	(48\%7-6)
4		5	($5 \% 7=5$)
5	40	55	($55 \% 7=6$)
6	76	47	(47\% 7 = 5)

ith probe: $\left(\mathrm{h}\right.$ (key) $+\mathrm{i}^{2}$) \% TableSize Another Quadratic Probing Example

$$
\begin{aligned}
& 0 \quad \text { TableSize }=7 \\
& \text { Uh-oh: For all } n,(5+(n * n)) \% 7 \text { is } 0,2,5 \text {, or } 6 \\
& \text { - Proof uses induction and }\left(n^{2}+5\right) \% 7=\left((n-7)^{2}+5\right) \% 7 \\
& \text { - In fact, for all } c \text { and } k,\left(\mathbf{n}^{2}+\mathrm{c}\right) \% \mathbf{k}=\left((\mathrm{n}-\mathrm{k})^{2}+\mathrm{c}\right) \% \mathbf{k}
\end{aligned}
$$

Quadratic Probing:

Success guarantee for $\lambda<1 / 2$

- If size is prime and $\lambda<1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all $0 \leq i, j \leq \operatorname{size} / 2$ and $i \neq j$
$\left(h(x)+i^{2}\right) \bmod$ size $\neq\left(h(x)+j^{2}\right) \bmod$ size
- by contradiction: suppose that for some $i \neq j$: $\left(h(x)+i^{2}\right) \bmod \operatorname{size}=\left(h(x)+j^{2}\right) \bmod$ size $\Rightarrow \quad i^{2} \bmod$ size $=j^{2} \bmod$ size
$\Rightarrow\left(i^{2}-j^{2}\right) \bmod$ size $=0$
$\Rightarrow[(i+j)(i-j)] \bmod$ size $=0$
BUT size does not divide (i-j) or (i+j)
How can $i+j=0$ or $i+j=$ size when:
$i \neq j \quad$ and $0 \leq i, j \leq$ size/2?
Similarly how can $\mathbf{i}-\mathbf{j}=0$ or $\mathbf{i}-\mathbf{j}=$ size ?
- So: If you keep $\lambda<1 / 2$, no need to detect cycles

1/28/2011

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering quadratic nature quickly escapes the neighborhood
- But it's no help if keys initially hash to the same index
- Called secondary clustering
- Any 2 keys that hash to the same value will have the same series of moves after that
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

1/28/2011 35

Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key, h (key) $=\mathrm{g}$ (key)
(h (key) $+\mathrm{f}(1)$) \% Tablesize

- For double hashing: $f(i)=i * g(k e y)$
- So probe sequence is:
- $0^{\text {th }}$ probe: h (key) of Tablesize
- $1^{\text {st }}$ probe: (h(key) + g(key)) \% Tablesize
- $2^{\text {nd }}$ probe: (h (key) $+2 * g$ (key)) TableSize
- $3^{\text {rd }}$ probe: (h (key) + 3*g (key)) $\%$ TableSize
- ...
- $i^{\text {th }}$ probe: (h (key) + i*g(key)) \% Tablesize
- Detail: Make sure g (key) can't be o

1/28/2011

Resolving Collisions with Double Hashing

0	$\mathrm{T}=10$ (TableSize) Hash Functions: $\mathrm{h}($ key $)=$ key mod T $\mathrm{g}($ key $)=1+($ key $/ \mathrm{T}) \bmod (\mathrm{T}-1))$
1	
2	
3	Insert these values into the hash table in this order. Resolve any collisions with double hashing:
4	
5	
6	13
7	28
8	33
9	147
9	43
1/28/2011	37

Double-hashing analysis

- Intuition: Since each probe is "jumping" by \mathbf{g} (key) each time, we "leave the neighborhood" and "go different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
- It is known that this cannot happen in at least one case:
- $\mathrm{h}(\mathrm{key})=$ key \% p
- $g($ key $)=q$ - (key \% q)
- $2<\mathrm{q}<\mathrm{p}$
- p and q are prime

Yet another reason to use a prime TableSize

- So, for double hashing
$i^{\text {th }}$ probe: $(\mathrm{h}(\mathrm{key})+\mathrm{i}$ *g(key)) \% TableSize
- Say g(key) divides Tablesize
- That is, there is some integer x such that $x^{*} g(k e y)=$ Tablesize
- After x probes, we'll be back to trying the same indices as
- Ex:
- Tablesize=50
- g(key)=25
- Probing sequence
-h(key)
- $\mathrm{h}($ key $)+25$
- h (key) $+50=\mathrm{h}$ (key)
- h(key)+75=h(key)+25
- Only 1 \& itself divide a prime

1/28/2011 39

Where are we?

- Separate Chaining is easy
- insert, find, delete proportion to load factor on average (insert can be constant if just push on front of list)
- Open addressing uses probe functions, has clustering issues as table gets full
- Why use it:
- Less memory allocation?
- Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
- Easier data representation?
- Now:
- Growing the table when it gets too full (aka "rehashing")
- Relation between hashing/comparing and connection to Java

1/28/2011

Rehashing

- Like with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over
- Especially with chaining, we get to decide what "too full" means
- Keep load factor reasonable (e.g., < 1)?
- Consider average or max size of non-empty chains?
- For open addressing, half-full is a good rule of thumb
- New table size
- Twice-as-big is a good idea, except, uhm, that won't be prime!
- So go about twice-as-big
- Can have a list of prime numbers in your code since you won't grow more than 20-30 times, and then calculate after that

1/28/2011 43

More on rehashing

- What if we copy all data to the same indices in the new table?
- Not going to work; calculated index based on TableSize we may not be able to find it later
- Go through current table, do standard insert for each into new table; run-time?
- $O(n)$: Iterate through table
- But resize is an $O(n)$ operation, involving n calls to the hash function (1 for each insert in the new table)
- Is there some way to avoid all those hash function calls again?
- Space/time tradeoff: Could store h (key) with each data item, but since rehashing is rare, this is probably a poor use of space
- And growing the table is still $O(n)$; only helps by a constant factor

Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy..
- OO way of saying it:

If a.equals (b), then we must require
a. hashCode () ==b . hashCode ()

- Function object way of saying it:

If c. compare $(a, b)==0$, then we must require
h.hash (a) == h.hash (b)

- Why is this essential?

Java bottom line

- Lots of Java libraries use hash tables, perhaps without your knowledge
- So: If you ever override equals, you need to override hashCode also in a consistent way
- See CoreJava book, Chapter 5 for other "gotchas" with equals

Bad Example

- Think about using a hash table holding points
class PolarPoint $\{$
double $r=0.0$;
double theta $=0.0$;
void addToAngle (double theta2) \{ theta+=theta2; \}
boolean equals (Object otherObject) \{
if (this==otherObject) return true;
if (getClass()!=other.getClass()) return false;
PolarPoint other $=$ (PolarPoint) otherObject; double angleDiff =
(theta - other.theta) \% (2*Math.PI);
double rDiff = r - other.r,
return Math.abs(angleDiff) <0.0001 \&\& Math.abs(rDiff) <0.0001;
\}
// wrong: must override hashCode!
\}
1/28/2011

Aside: Comparable/Comparator have rules too

We didn't emphasize some important "rules" about comparison functions for:

- all our dictionaries
- sorting (next major topic)

Comparison must impose a consistent, total ordering:
For all \mathbf{a}, \mathbf{b}, and \mathbf{c},

- If compare $(a, b)<0$, then compare $(b, a)>0$
- If compare $(a, b)=0$, then compare $(b, a)=0$
- If compare (a,b) < 0 and compare (b, c) < 0 , then compare $(a, c)<0$

Some final arguments for a prime table size

If TableSize is 60 and...

- Lots of data items are multiples of 5 , wasting 80% of table
- Lots of data items are multiples of 10 , wasting 90% of table
- Lots of data items are multiples of 2 , wasting 50% of table

If TableSize is $61 .$.

- Collisions can still happen, but $5,10,15,20, \ldots$ will fill table
- Collisions can still happen but $10,20,30,40, \ldots$ will fill table
- Collisions can still happen but $2,4,6,8, \ldots$ will fill table

In general, if \mathbf{x} and \mathbf{y} are "co-prime" (means $\operatorname{gcd}(\mathbf{x}, \mathbf{y})==1$), then
$(a * x) \% y=(b * x) \% y$ if and only if $a \% y==b \% y$

- So, given table size y and keys as multiples of x, we'll get a decent distribution if $x \& y$ are co-prime
- Good to have a TableSize that has no common factors with any "likely pattern" x

Final word on hashing

- The hash table is one of the most important data structures
- Supports only find, insert, and delete efficiently
- FindMin, FindMax, predecessor, etc.: not so efficiently
- Most likely data-structure to be asked about in interviews; many real-world applications
- Important to use a good hash function
- Good distribution
- Uses enough of key's values
- Important to keep hash table at a good size
- Prime \#
- Preferable λ depends on type of table
- Side-comment: hash functions have uses beyond hash tables
- Examples: Cryptography, check-sums

