
CSE332: Data Abstractions

Lecture 11:More Hashing

Ruth Anderson
Winter 2011

Announcements

• Homework 3 – due NOW!

• Project 2 – Phase A due next Wed Feb 2nd at 11pm

• (No homework due next Friday)

• Midterm – Monday Feb 7 th during lecture
• Homework 4 – not due until Friday Feb 11th at the BEGINNING

of lecture

1/28/2011 2

Today

• Dictionaries

– Hashing

1/28/2011 3

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find , insert , and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But growable as we’ll see

1/28/2011 4

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Hashing Choices

1. Choose a Hash function

2. Choose TableSize

3. Choose a Collision Resolution Strategy from these:

– Separate Chaining

– Open Addressing

• Linear Probing
• Quadratic Probing

• Double Hashing

• Other issues to consider:

– Deletion?
– What to do when the hash table gets “too full”?

1/28/2011 5

An Alternative to Separate Chaining:
Open Addressing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?
• If h(key) is already full,

– try (h(key) + 1) % TableSize . If full,

– try (h(key) + 2) % TableSize . If full,
– try (h(key) + 3) % TableSize . If full…

• Example: insert 38, 19, 8, 109, 10

1/28/2011 6

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

An Alternative to Separate Chaining:
Open Addressing

1/28/2011 7

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize . If full,

– try (h(key) + 2) % TableSize . If full,

– try (h(key) + 3) % TableSize . If full…

• Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining:
Open Addressing

1/28/2011 8

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize . If full,

– try (h(key) + 2) % TableSize . If full,

– try (h(key) + 3) % TableSize . If full…

• Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining:
Open Addressing

1/28/2011 9

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize . If full,

– try (h(key) + 2) % TableSize . If full,

– try (h(key) + 3) % TableSize . If full…

• Example: insert 38, 19, 8, 109, 10

An Alternative to Separate Chaining:
Open Addressing

1/28/2011 10

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize . If full,

– try (h(key) + 2) % TableSize . If full,

– try (h(key) + 3) % TableSize . If full…

• Example: insert 38, 19, 8, 109, 10

Open addressing
This is one example of open addressing

– More generally, we just need to describe where to check next when one
attempt fails (cell already in use)

– Each version of open addressing involves specifying a sequence of
indices to try

Trying the next spot is called probing
– Our i th probe was: (h(key) + i) % TableSize

• This is called linear probing
– In general have some probe function f and use:

(h(key) + f(i)) % TableSize

for the i th probe (start at i=0)

• For linear probing, f(i)=i

Open addressing does poorly with high load factor λλλλ
– So want larger tables

– Too many probes means no more O(1)

1/28/2011 11

Terminology

We and the book use the terms

– “chaining” or “separate chaining”

– “open addressing”

Very confusingly,

– “open hashing” is a synonym for “chaining”
– “closed hashing” is a synonym for “open addressing”

1/28/2011 12

Open Addressing: Linear Probing

What about find ? If value is in table? If not there? Worst case?

What about delete ?

How does open addressing with linear probing compare to separate
chaining?

1/28/2011 13

Other operations

Okay, so insert finds an open table position using a probe function

What about find ?

– Must use same probe function to “retrace the trail” and find the
data

– Unsuccessful search when reach empty position

What about delete ?

– Must use “lazy” deletion. Why?

– But here just means “no data here, but don’t stop probing”
– Note: delete with chaining is plain-old list-remove

1/28/2011 14

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (a good thing)

1/28/2011 15

[R. Sedgewick]

Tends to produce
clusters, which lead
to long probing
sequences

• Called primary
clustering

• Saw this starting in
our example

Analysis of Linear Probing

• Trivial fact: For any λλλλ < 1, linear probing will find an empty slot
– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given λλλλ (in the limit as TableSize →∞∞∞∞)

– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

1/28/2011 16

()

−
+ 21

1
1

2

1

λ

()

−
+

λ1

1
1

2

1

In a chart

• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in λλλλ and has no
trouble with λλλλ>1

1/28/2011 17

Open Addressing: linear probing

1/28/2011 18

Open Addressing: Quadratic probing

1/28/2011 19

Quadratic Probing Example

1/28/2011 20

0

1

2

3

4

5

6

7

8

9

TableSize=10
Insert:
89
18
49
58
79

ith probe: (h(key) + i 2) % TableSize

Quadratic Probing Example

1/28/2011 21

0

1

2

3

4

5

6

7

8

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

1/28/2011 22

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

1/28/2011 23

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

1/28/2011 24

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

1/28/2011 25

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Another Quadratic Probing Example

1/28/2011 26

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5

6

ith probe: (h(key) + i 2) % TableSize

Another Quadratic Probing Example

1/28/2011 27

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

1/28/2011 28

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

1/28/2011 29

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

1/28/2011 30

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

1/28/2011 31

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

ith probe: (h(key) + i 2) % TableSize

Another Quadratic Probing Example

1/28/2011 32

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Uh-oh: For all n, (5 +(n*n)) % 7 is 0, 2, 5, or 6
• Proof uses induction and (n 2+5) % 7 = ((n-7) 2+5) % 7

• In fact, for all c and k, (n 2+c) % k = ((n-k) 2+c) % k

ith probe: (h(key) + i 2) % TableSize

From bad news to good news

• The bad news is: After TableSize quadratic probes, we will just
cycle through the same indices

• The good news:
– Assertion #1: If T = TableSize is prime and λ < ½, then

quadratic probing will find an empty slot in at most T/2 probes

– Assertion #2: For prime T and 0 ≤≤≤≤ i,j ≤≤≤≤ T/2 where i ≠≠≠≠ j ,
(h(key) + i 2) % T ≠≠≠≠ (h(key) + j 2) % T

That is, if T is prime, the first T/2 quadratic probes map to
different locations

– Assertion #3: Assertion #2 is the “key fact” for proving
Assertion #1

• So: If you keep λ < ½, no need to detect cycles

1/28/2011 33 1/28/2011 34

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will find
an empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i 2) mod size ≠≠≠≠ (h(x) + j 2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i 2) mod size = (h(x) + j 2) mod size

⇒⇒⇒⇒ i 2 mod size = j 2 mod size

⇒⇒⇒⇒ (i 2 - j 2) mod size = 0

⇒⇒⇒⇒ [(i + j)(i - j)] mod size = 0
BUT size does not divide (i-j) or (i+j)

How can i+j = 0 or i+j = size when:

i ≠≠≠≠ j and 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 ?
Similarly how can i-j = 0 or i-j = size ?

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering:
quadratic nature quickly escapes the neighborhood

• But it’s no help if keys initially hash to the same index

– Called secondary clustering
– Any 2 keys that hash to the same value will have the same

series of moves after that

• Can avoid secondary clustering with a probe function that
depends on the key: double hashing…

1/28/2011 35

Open Addressing: Double hashing

1/28/2011 36

1/28/2011 37

Resolving Collisions with Double Hashing
0

1

2

3

4

5

6

7

8

9

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

T = 10 (TableSize)
Hash Functions:

h(key) = key mod T
g(key) = 1 + ((key/T) mod (T-1))

Double-hashing analysis

• Intuition: Since each probe is “jumping” by g(key) each time,
we “leave the neighborhood” and “go different places from other
initial collisions”

• But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

– It is known that this cannot happen in at least one case:
• h(key) = key % p

• g(key) = q – (key % q)

• 2 < q < p

• p and q are prime

1/28/2011 38

Yet another reason to use a prime
TableSize

39

• So, for double hashing
ith probe: (h(key) + i*g(key))% TableSize

• Say g(key) divides Tablesize
– That is, there is some integer x such that x*g(key)=Tablesize
– After x probes, we’ll be back to trying the same indices as

before
• Ex:

– Tablesize=50
– g(key)=25
– Probing sequence:

• h(key)
• h(key)+25
• h(key)+50=h(key)
• h(key)+75=h(key)+25

• Only 1 & itself divide a prime

1/28/2011

More double-hashing facts

• Assume “uniform hashing”
– Means probability of g(key1) % p == g(key2) % p is

1/p

• Non-trivial facts we won’t prove:
Average # of probes given λλλλ (in the limit as TableSize →∞∞∞∞)

– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad

1/28/2011 40

1
1 λ−

1 1
log

1eλ λ

 −

Charts

1/28/2011 41

Where are we?

• Separate Chaining is easy
– insert , find , delete proportion to load factor on average

(insert can be constant if just push on front of list)

• Open addressing uses probe functions, has clustering issues as
table gets full

– Why use it:

• Less memory allocation?

• Some run-time overhead for allocating linked list (or
whatever) nodes; open addressing could be faster

• Easier data representation?

• Now:

– Growing the table when it gets too full (aka “rehashing”)

– Relation between hashing/comparing and connection to Java

1/28/2011 42

Rehashing

• Like with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything over

• Especially with chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?
– Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except, uhm, that won’t be prime!

– So go about twice-as-big
– Can have a list of prime numbers in your code since you won’t

grow more than 20-30 times, and then calculate after that

1/28/2011 43

More on rehashing
• What if we copy all data to the same indices in the new table?

– Not going to work; calculated index based on TableSize –
we may not be able to find it later

• Go through current table, do standard insert for each into new
table; run-time?

– O(n): Iterate through table

• But resize is an O(n) operation, involving n calls to the hash
function (1 for each insert in the new table)
– Is there some way to avoid all those hash function calls

again?
– Space/time tradeoff: Could store h(key) with each data

item, but since rehashing is rare, this is probably a poor use
of space

• And growing the table is still O(n); only helps by a
constant factor

1/28/2011 44

Hashing and comparing

• For insert/find, as we go through the chain or keep probing, we
have to compare each item we see to the key we’re looking for
– We need to have a comparator (or key’s type needs to be

comparable)
– Don’t actually need < & >; just =

• So a hash table needs a hash function and a comparator

– In Project 2, you’ll use two function objects

– The Java standard library uses a more OO approach where
each object has an equals method and a hashCode method:

1/28/2011 45

class Object {
boolean equals (Object o) {…}
int hashCode () {…}
…

}

Equal objects must hash the same

• The Java library (and your project hash table) make a very
important assumption that clients must satisfy…

• OO way of saying it:
If a.equals(b) , then we must require
a.hashCode()==b.hashCode()

• Function object way of saying it:

If c.compare(a,b) == 0 , then we must require

h.hash(a) == h.hash(b)

• Why is this essential?

1/28/2011 46

Java bottom line

• Lots of Java libraries use hash tables, perhaps without your
knowledge

• So: If you ever override equals , you need to override
hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other “gotchas” with
equals

1/28/2011 47

Bad Example

1/28/2011 48

class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle (double theta2) { theta+=theta2; }
…
boolean equals (Object otherObject) {

if (this==otherObject) return true;
if (otherObject==null) return false;
if (getClass()!=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff =

(theta – other.theta) % (2*Math.PI);
double rDiff = r – other.r;
return Math.abs(angleDiff) < 0.0001

&& Math.abs(rDiff) < 0.0001;
}
// wrong: must override hashCode!

}

• Think about using a hash table holding points

Aside: Comparable/Comparator
have rules too
We didn’t emphasize some important “rules” about comparison

functions for:

– all our dictionaries

– sorting (next major topic)

Comparison must impose a consistent, total ordering:
For all a, b, and c ,

– If compare(a,b) < 0 , then compare(b,a) > 0

– If compare(a,b) == 0 , then compare(b,a) == 0

– If compare(a,b) < 0 and compare(b,c) < 0 ,
then compare(a,c) < 0

1/28/2011 49

Some final arguments for a prime table size

50

If TableSize is 60 and…
– Lots of data items are multiples of 5, wasting 80% of table
– Lots of data items are multiples of 10, wasting 90% of table
– Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…
– Collisions can still happen, but 5, 10, 15, 20, … will fill table
– Collisions can still happen but 10, 20, 30, 40, … will fill table
– Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then
(a * x) % y == (b * x) % y if and only if a % y == b % y

– So, given table size y and keys as multiples of x, we’ll get a decent
distribution if x & y are co-prime

– Good to have a TableSize that has no common factors with any
“likely pattern” x

1/28/2011

Final word on hashing

• The hash table is one of the most important data structures
– Supports only find, insert, and delete efficiently
– FindMin, FindMax, predecessor , etc.: not so efficiently
– Most likely data-structure to be asked about in interviews; many

real-world applications
• Important to use a good hash function

– Good distribution
– Uses enough of key’s values

• Important to keep hash table at a good size
– Prime #
– Preferable λ depends on type of table

• Side-comment: hash functions have uses beyond hash tables

– Examples: Cryptography, check-sums

1/28/2011 51

