

Announcements

- Project 2 - posted later this afternoon
- Homework 2 - due Friday Jan $21^{\text {st }}$ at beginning of class, see clarifications posted

Today
- Dictionaries - AVL Trees

The AVL Balance Condition
Left and right subtrees of every node have equal heights differing by at most 1

Define: balance $(x)=$ height $(x$.left $)-\operatorname{height}(x$. right $)$
AVL property: $-1 \leq \operatorname{balance}(x) \leq 1$, for every node x

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\Theta\left(2^{h}\right)$) nodes
- Easy to maintain
- Using single and double rotations

1/19/2011

Ordering property

- Same as for BST

1/192011

Proving Shallowness Bound

The shallowness bound

Let $S(h)=$ the minimum number of nodes in an AVL tree of height h

- If we can prove that $S(h)$ grows exponentially in h, then a tree with n nodes has a logarithmic height
- Step 1: Define $S(h)$ inductively using AVL property
$-S(-1)=0, S(0)=1, S(1)=2$
- For $h \geq 2, S(h)=1+S(h-1)+S(h-2)$
- Step 2: Show this recurrence grows really fast
- Similar to Fibonacci numbers

- Can prove for all $h, S(h)>\phi^{h}-1$ where
ϕ is the golden ratio, $(1+\sqrt{ } 5) / 2$, about 1.62
- Growing faster than 1.6^{h} is "plenty" exponential

Before we prove it

- Good intuition from plots comparing:
- $S(h)$ computed directly from the definition
- $((1+\sqrt{5}) / 2)^{h}$
- $S(h)$ is always bigger
- Graphs aren't proofs, so let's prove it

The proof
$S(-1)=0, S(0)=1, S(1)=2$ For $h \geq 2, S(h)=1+S(h-1)+S(h-2)$

Theorem: For all $h \geq 0, S(h)>\phi^{h}-1$
Proof: By induction on h
Base cases:

$$
S(0)=1>\phi^{0}-1=0 \quad S(1)=2>\phi^{1}-1 \approx 0.62
$$

Inductive case ($k>1$):
Show $S(k+1)>\phi^{k+1}-1$ assuming $S(k)>\phi^{k}-1$ and $S(k-1)>\phi^{k-1}-1$
$S(k+1)=1+S(k)+S(k-1) \quad$ by definition of S
$>1+\phi^{k}-1+\phi^{k-1}-1$ by induction
$=\phi^{k}+\phi^{k-1}-1 \quad$ by arithmetic (1-1=0) $=\phi^{k-1}(\phi+1)-1 \quad$ by arithmetic (factor $\left.\phi^{k-1}\right)$ $=\phi^{k-1} \phi^{2}-1 \quad$ by special property of ϕ $=\phi^{k+1}-1 \quad$ by arithmetic (add exponents)

1/19/2011

AVL tree insert

Let x be the node where an imbalance occurs. Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x

Idea: Cases $1 \& 4$ are solved by a single rotation. Cases $2 \& 3$ are solved by a double rotation.

Case \#1 Example

Insert(6)
Insert(3)
Insert(1)

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
3. So after recursive insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that makes it a bit easier:

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
- 1 of 4 possible imbalance causes (other three coming)
- So we rotate at a, using BST facts: $X<b<Y<a<Z$

- A single rotation restores balance at the node
- To same height as before insertion (so ancestors now balanced) 1/19/2011 22

The general right-right case

- Mirror image to left-left case, so you rotate the other way
- Exact same concept, but need different code

Case \#3 Example

Insert(1)
Insert(6)
Insert(3)

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- First wrong idea: single rotation like we did for left-left

1/19/2011
27

Sometimes two wrongs make a right \odot

- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- Second wrong idea: single rotation on the child of the unbalanced node
$(1)^{2}$
(1) ${ }^{2}$

1/19/2011

The last case: left-right

- Mirror image of right-left
- Again, no new concepts, only new code to write

Double rotation, step 2

Now efficiency

Have argued rotations restore AVL property but do they produce an efficient data structure?

- Worst-case complexity of find: $O(\log n)$
- Worst-case complexity of insert: $O(\log n)$
- A rotation is $O(1)$ and there's an $O(\log n)$ path to root
- (Same complexity even without one-rotation-is-enough fact)
- Worst-case complexity of buildrree: $O(n \log n)$

Will take some more rotation action to handle delete... unbalanced subtree has the same height as before the insertion

- So all ancestors are now balanced

More Examples...	

Insert into an AVL tree: a becd
Student Activity

Single and Double Rotations:		
Inserting what integer values		
would cause the tree to need		
a:		
1. single rotation?		
2. double rotation?		
3. no rotation?		
Student Activity		

Easy Insert

