

Today

- Dictionaries
- Trees

Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty,..
2. Queue: enqueue, dequeue, isEmpty, ...
3. Priority queue: insert, deleteMin, ..

Next:
4. Dictionary (a.k.a. Map): associate keys with values - probably the most common, way more than priority queue

The Dictionary (a.k.a. Map, a.k.a. Associative Array) ADT

- Data:
- set of (key, value) pairs
- keys must be comparable (< or > or =)
- Primary Operations:
- insert (key, val) : places (key, val) in map
- If key already used, overwrites existing entry
- find(key): returns val associated with key
- delete (key)

Announcements

- Project 1 - phase B due Tues Jan $18^{\text {th, }} 11$ pm via catalyst
- Homework 1 - due NOW!
- Homework 2 - due Friday Jan $21^{\text {st }}$ at beginning of class
- No class on Monday Jan $17^{\text {th }}$
- Ruth's Office hours moved to Tues Jan 18 ${ }^{\text {th }} 12: 30-1: 30 \mathrm{pm}$

The Dictionary (a.k.a. Map) ADT

Comparison: Set ADT vs. Dictionary ADT

The Set ADT is like a Dictionary without any values

- A key is present or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets
- Java HashSet implemented using a HashMap, for instance

Set ADT may have other important operations

- union, intersection, is_subset
- notice these are operators on 2 sets

Dictionary data structures

Will spend the next $1.5-2$ weeks looking at dictionaries with three different data structures

1. AVL trees

- Binary search trees with guaranteed balancing

2. B-Trees

- Also always balanced, but different and shallower
- B!=Binary; B-Trees generally have large branching factor

3. Hashtables

- Not tree-like at all

Skipping: Other balanced trees (red-black, splay)
But first some applications and less efficient implementations...
1/14/2011 \qquad

Simple implementations

For dictionary with n key/value pairs

- Unsorted linked-list
- Unsorted array
- Sorted linked list
- Sorted array

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

1/14/2011

Lazy Deletion

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{5 0}$
\checkmark	\mathbf{x}	\checkmark	\checkmark	\checkmark	\checkmark	\mathbf{x}	\checkmark	\checkmark

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find $O(\log m)$ time where m is data-structure size (okay)
- May complicate other operations
/14/2011

Some tree terms (mostly review)

- There are many kinds of trees
- Every binary tree is a tree
- Every list is kind of a tree (think of "next" as the one child)
- There are many kinds of binary trees
- Every binary min heap is a binary tree
- Every binary search tree is a binary tree
- A tree can be balanced or not
- A balanced tree with n nodes has a height of $O(\log n)$
- Different tree data structures have different "balance conditions" to achieve this

1/14/2011

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count \# of edges)
For binary tree of height h :

- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:

Calculating height

What is the height of a tree with root r ?
int treeHeight (Node root) $\{$
???
\}

Calculating height

What is the height of a tree with root r ?

```
int treeHeight(Node root) {
            if(root == null)
            return -1;
            return 1 + max(treeHeight(root.left),
                                    treeHeight(root.right));
}
```

Running time for tree with n nodes: $O(n)$ - single pass over tree
Note: non-recursive is painful - need your own stack of pending nodes; much easier to use recursion's call stack

Tree Traversals
A traversal is an order for visiting all the nodes of a tree

- Pre-order: root, left subtree, right subtree
- In-order. left subtree, root, right subtree
- Post-order: left subtree, right subtree, root

(an expression tree)

1/14/2011 19

More on traversals

```
void inOrdertraversal (Node t) {
    if(t != null) {
        traverse(t.left);
        process(t.element),
        traverse(t.right)
    }
}
Sometimes order doesn't matter
    - Example: sum all elements
Sometimes order matters
    - Example: print tree with parent above
        indented children (pre-order)
    - Example: evaluate an expression tree
        (post-order)
```


A
B D
E
C
F G

Find in BST, Recursive

Other "finding operations"

- Find minimum node
- Find maximum node
- Find predecessor?
- Find successor?

Deletion in BST

Why might deletion be harder than insertion?

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree: findMax (node.left)
- These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

- Leaf or one child case - easy cases of delete!

BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- If inserted in given order,
what is the tree? what is the tree?
 any better?

BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?
- Is inserting in the reverse order any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
- 5, 3, 7, 2, 1, 4, 8, 6, 9
- What tree does that give us?
- What big-O runtime?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
- $5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime? $O(n \log n)$, definitely better

1/14/2011 37

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes Only perfect trees ($2^{n}-1$ nodes

4. Left and right subtrees of every node have equal height

Too strong!
Only perfect trees $\left(2^{n}-1\right.$ nodes $)$

1/14/2011
43

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) $=$ height(node.left) - height(node.right)

AVL property: for every node $x,-1 \leq$ balance $(x) \leq 1$

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Easy (well, efficient) to maintain
- Using single and double rotations

1/14/2011

