CSE332: Data Abstractions

Lecture 5: Binary Heaps, Continued

Ruth Anderson
Winter 2011

Announcements

« Project 1 — phase A due Wed Jan 12" 11pm via catalyst
— Email sent about commenting style

* Homework 1 — due Friday Jan 14" at beginning of class
— Clarifications posted

* Homework 2 — due Friday Jan 21t — coming soon!

* No class on Monday Jan 17t
» Ruth’s Office hours moved to Tues Jan 18t 12:30-1:30pm

1/12/2011 2

Today

« Priority Queues, Ch 6, 6.1-6.3
« Binary Min Heap implementation

1/12/2011

insert
—

« Priority Queue ADT: insert comparable object, deleteMin

« Binary heap data structure: Complete binary tree where each
node has priority value greater than its parent

¢ O(height-of-tree)=O(log n)insert and deleteMin operations
— insert : put at new last position in tree and percolate-up
— deleteMin : remove root, put last element at root and

percolate-down
« But: tracking the “last position” is painful and we can do better

1/12/2011 4

Array Representation of Binary Trees

From node i :

left child:
right child:
Parent:

(wasting index 0 is
convenient)

implicit (array) implementation:

[lalelclofef[rlefn[i]a]x]L

0 1 2 3 4 5 6 7 8 9 10 11 12

1/12/2011

13

Array Representation of Binary Trees

From node i :

left child: i*2
right child: i*2+1
parent: i/2

(wasting index 0 is
convenient)

implicit (array) implementation:

[lalelclofef[rlefn[i]a]r]t]

0 1 2 3 4 5 6 7 8 9 10 11 12

1/12/2011 6

13

Judging the array implementation

Plusses:
« Non-data space: just index 0 and unused space on right

— In conventional tree representation, one edge per node
(except for root), so n-1 wasted space (like linked lists)
— Array would waste more space if tree were not complete
« For reasons you learn in CSE351 / CSE378, multiplying and
dividing by 2 is very fast
« Last used position is just index size

Minuses:

« Same might-by-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it

1/12/2011 7

Note this pseudocode inserts ints,
not useful data with priorities

Pseudocode: insert

void insert (int val){ int percolateUp (int holle),{
if (size== - int va
! r(zlszife()?rrllength g while (hole > 1 &&
sizet+; i \fa]l <arr| Eo:egi)
! arrfhole arr ole,
| =percolateUp(size,val); hole = hole /
arr[i] = val; }
} return hole;
;@% ®®
0O &

[10[20]e 4 608 [oro[s0] [[|

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1/12/2011 8

Note this pseudocode deletes ints,

Pseudocode: deleteMin

not useful data with priorities

int deleteMin () { int percolateDown(int holle),{
- int va
it (isEmpty() Y cco while (2*hole <= size) {
ans =arr[1]; left —2*ho|e
hole = percolateDown right =
(1,arr[size]); if (arr[left]<arr[r|ght]
arr[hole] = arr[size]; Il right > size)
N - U target = left;
size--; else
return ans; target =right;
} if (arrftarget] < val) {
arr[hole] = arr[target];
hole = target;
} else
break;

return hole;

N

[10]20]e 4608][o[mo[so] [| [|

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1/12/2011 9

Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

1/12/2011 10

Example: After insertion

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

[[2]s2] 4]69]105[43]16]
0o 1 2 3 4 5 6 7

/® .
o o

1/12/2011 11

Example: After deletion

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

[[a]s2]16]60]105]43]
0o 1 2 3 4 5 6 7

/C‘D\
o

1/12/2011 12

Other operations

« decreaseKey : given pointer to object in priority queue (e.g., its
array index), lower its priority value by p
— Change priority and percolate up

« increaseKey : given pointer to object in priority queue (e.g., its
array index), raise its priority value by p

— Change priority and percolate down

* remove : given pointer to object, take it out of the queue
— decreaseKey with p = o0, then deleteMin

Running time for all these operations?

1/12/2011 13

Insert run-time: Take 2

« Insert: Place in next spot, percUp /
« How high do we expect it to go? g
- Aside: Complete Binary Tree o) (s0)
— Each full row has 2x nodes of parent row
— 1424448+, 42%= 2k] o) G

— Bottom level has ~1/2 of all nodes X .

— Second to bottom has ~1/4 of all nodes 700
« PercUp Intuition:

— Move up if value is less than parent

— Inserting a random value, likely to have value not near highest, nor
lowest; somewhere in middle

— Given arandom distribution of values in the heap, bottom row should
have the upper half of values, 2" from bottom row, next 1/4
— Expect to only raise a level or 2, even if his large
« Worst case: still O(logn)
« Expected case: O(1)
« Of course, there’s no guarantee; it may percUp to the root

1/12/2011 14

Build Heap

« Suppose you started with n items to put in a new priority queue
— Call this the buildHeap operation

« create , followed by ninsert s works
— Only choice if ADT doesn’t provide buildHeap explicitly
— O(nlog n)

* Why would an ADT provide this unnecessary operation?
— Convenience
— Efficiency: an O(n) algorithm called Floyd's Method

— Common issue in ADT design: how many specialized
operations

1/12/2011 15

Floyd’s Method

1. Use n items to make any complete tree you want
— Thatis, put them in array indices 1,...,n

2. Treatitas a heap by fixing the heap-order property
— Bottom-up: leaves are already in heap order, work up
toward the root one level at a time
void buildHeap () {
for (i =sizel2;i>0; i--) {
val = arri];
hole = percolateDown(i,val);
arr[hole] = val;

1/12/2011 16

Example

* Say we start with:
[12,5,11,3,10,2,9,4,8,1,7,6]
« In tree form for readability

— Red for node not less than
descendants

« heap-order problem
— Notice no leaves are red
— Check/fix each non-leaf
bottom-up (6 steps here)

1/12/2011 17

Example

* Happens to already be less than children (er, child)

1/12/2011 18

Example

Example

« Percolate down (notice that moves 1 up)

1/12/2011

19

« Another nothing-to-do step

1/12/2011 20

Example

+ Percolate down as necessary (steps 4a and 4b)

1/12/2011

21

Example

1/12/2011 22

Example

1/12/2011

But is it right?

« “Seems to work”
— Let's prove it restores the heap property (correctness)
— Then let's prove its running time (efficiency)

void buildHeap () {
for (i =sizel2;i>0; i--) {
val = arrfi];
hole = percolateDown(i,val);
arrfhole] = val;
}
}

1/12/2011 24

Correctness

void buildHeap () {
for (i =size/2;i>0; i--) {
val = arri];
hole = percolateDown(i,val);
arr[hole] = val;

}
Loop Invariant: For all j >i , arrfj] is less than its children
« True initially: If j > size/2 ,thenj is aleaf

— Otherwise its left child would be at position > size
« True after one more iteration: loop body and percolateDown
make arrli] less than children without breaking the property
for any descendants
So after the loop finishes, all nodes are less than their children

1/12/2011 25

Efficiency

void buildHeap () {
for (i =size/2;i>0; i--) {
val = arri];
hole = percolateDown(i,val);
arr[hole] = val;

}

Easy argument: buildHeap is O(nlog n)where nis size
* size/2 loop iterations
« Each iteration does one percolateDown , each is O(log n)

This is correct, but there is a more precise (“tighter”) analysis of
the algorithm...

1/12/2011 26

void buildHeap () {
for (i =size/2;i>0; i--) {
val = arri];
hole = percolateDown(i,val);
arrfhole] = val;

Efficiency

}
Better argument: buildHeap is O(n) where n is size
e size/2 total loop iterations: O(n)
« 1/2 the loop iterations percolate at most 1 step
« 1/4 the loop iterations percolate at most 2 steps
« 1/8 the loop iterations percolate at most 3 steps... etc.
o ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) = 2 (page 4 of Weiss)
— So at most 2(size/2) total percolate steps: O(n)

— Also see p. 211 Weiss, sum of heights of nodes in a perfect
tree

1/12/2011 27

Lessons from buildHeap

« Without buildHeap , our ADT already let clients implement their
own in 8(nlog n) worst case

— Worst case is inserting lower priority values later

« By providing a specialized operation internally (with access to the
data structure), we can do O(n) worst case

— Intuition: Most data is near a leaf, so better to percolate down

« Can analyze this algorithm for:
— Correctness: Non-trivial inductive proof using loop invariant
— Efficiency:
« First analysis easily proved it was O(n log n)
« A “tighter” analysis shows same algorithm is O(n)

1/12/2011 28

What we're skipping (see text if curious)

« d-heaps: have d children instead of 2 (Weiss 6.5)
— Makes heaps shallower, useful for heaps too big for memory
— How does this affect the asymptotic run-time (for small d’'s)?
« Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
— Different data structures for priority queues that support a
logarithmic time merge operation (impossible with binary
heaps)
— merge: given two priority queues, make one priority queue
— Insert & deleteMin defined in terms of merge

Aside: How might you merge binary heaps:
« If one heap is much smaller than the other?
« If both are about the same size?

1/12/2011 29

