

Announcements

- Room changes - section and lecture, (see course web page) maybe still one change for section
- Project 1 - phase A due next Wed Jan $12^{\text {th }}$
- Homework 1 - due Friday Jan $14^{\text {th }}$ at beginning of class
- Info sheets?
- Catalyst Survey

Today

Comparing Two Algorithms...

- How to compare two algorithms?
- Analyzing code
- Big-Oh

Gauging performance

- Uh, why not just run the program and time it?

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space
- OS, version of Java, libraries, drivers
- Programs running in the background
- Implementation dependent
- Choice of input
- Timing doesn't really evaluate the algorithm; it evaluates an
(n) because probably any algorithm is "plenty good for small inputs (if n is 10, probably anything is fast enough) implementation in one very specific scenario

Analyzing code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.
(This is an approximation of reality: a very useful "lie".)
Consecutive statements
Sum of times
Conditionals
Loops
Calls
Recursion

1/07/2011

Example

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 16 & 37 & 50 & 73 & 75 & 126 \\
\hline
\end{array}
$$

Find an integer in a sorted array

// requires array is sorted

// returns whether k is in array
boolean find (int[]arr, int k) \{
???
\}

1/07/2011

Linear search

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{
for (int $i=0 ; i<a r r . l e n g t h ; ~++i)$

$$
\text { if (arr}[i]==k \text {) }
$$

return true;
\}

> Worst case:

1/07/2011
Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
false;

1/07/2011
Best case: 6ish steps $=O(1)$
Worst case: 6ish*(arr.length) $=O$ (arr.length)

Binary search

Find an integer in a sorted array

- Can also be done non-recursively but "doesn't matter" here
// requires array is sorted
// returns whether k is in array
return help(arr,k,o, arr. length);
\}
boolean help(int[]arr, int k, int lo, int hi) \{ int mid $=($ hitlo)/2; //i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if (arr[mid]==k) return true;
if(arr[mid]< k) return help(arr, k,mid+1,hi); else return help(arr,k,lo,mid);

1/07/2011

Binary search

Best case: 8ish steps $=O(1)$
Worst case: $T(n)=10$ ish $+T(n / 2)$ where n is hi-lo

- $O(\log n)$ where n is array. length
- Solve recurrence equation to know that...
// requires array is sorted
// returns whether k is in array
boolean find (int[]arr, int k) $\{$
return help(arr, $k, 0, a r r . l e n g t h) ;$
boolean help(int[]arr, int k, int lo, int hi) \{ int mid $=(\mathrm{hi}+10) / 2$;
if (lo==hi) return false;
if (arr[mid]==k) return true;
if (arr[mid]< k) return help(arr,k,mid+1,hi); else return help (arr,k,lo,mid)
\}

1/07/2011

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
T(n)=10+T(n / 2) \quad T(1)=8
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
- But which is faster
- Could depend on constant factors
- How many assignments, additions, etc. for each n
- And could depend on size of n
- But there exists some n_{0} such that for all $n>n_{0}$ binary search wins
- Let's play with a couple plots to get some intuition..

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
T(n)=10+T(n / 2) \quad T(1)=8
$$

2. "Expand" the original relation to find an equivalent general
expression in terms of the number of expansions

- $\quad T(n)=10+10+T(n / 4)$
$=10+10+10+T(n / 8)$
$=10 \mathrm{k}+T\left(n /\left(2^{\mathrm{k}}\right)\right)$

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case - $\quad n /\left(2^{k}\right)=1$ means $n=2^{\mathrm{k}}$ means $\mathrm{k}=\log _{2} n$

- So $T(n)=10 \log _{2} n+8$ (get to base case and do it)
- So $T(n)$ is $O(\log n)$

1/07/2011

Example

- Let's try to "help" linear search
- Run it on a computer 100x as fast (say 2010 model vs. 1990)
- Use a new compiler/language that is $3 x$ as fast
- Be a clever programmer to eliminate half the work
- So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!

Another example: sum array

Two "obviously" linear algorithms: $T(n)=O(1)+T(n-1)$

```
Iterative: int sum(int[] arr) {
        for(int i=0; i<arr.length; ++i)
        ans += arr[i];
        return ans;
    }
Recursive: int sum(int[] arr) {
    - Recurrence is }
        k+k+\ldots+k int help(int[]arr,int i) {
        for }n\mathrm{ times if(i==arr.length)
            return 0;
        return arr[i] + help(arr,i+1);
            }
```


What about a binary version?

```
int sum(int[] arr){
    return help(arr,0,arr.length);
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    (10)
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n)=O(1)+2 T(n / 2)$
$-1+2+4+8+\ldots$ for $\log n$ times
$-2^{(\log n)}-1$ which is proportional to n (definition of logarithm)
Easier explanation: it adds each number once while doing little else
"Obvious": You can't do better than $O(n)$ - have to read whole array

Parallelism teaser

- But suppose we could do two recursive calls at the same time
- Like having a friend do half the work for you!
int sum(int[]arr)
return help(arr, 0, arr.length);
int help(int[]arr, int lo, int hi)
if (lo==hi) return 0;
if (lo==hi-1) return arr[lo];
int mid (ni+lo)/2; r heturn (arr, lo, mid) + help (arr,mid, hi)
\}
- If you have as many "friends of friends" as needed the recurrence is now $T(n)=O(1)+1 T(n / 2)$
- $O(\log n):$ same recurrence as for f ind

Asymptotic notation

About to show formal definition, which amounts to saying

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:

- $4 n+5$
- $0.5 n \log n+2 n+7$
$-n^{3}+2^{n}+3 n$
- $n \log \left(10 n^{2}\right)$

Examples

True or false?

1.	$4+3 n$ is $O(n)$			
2.	True			
3.	$\log n+2$ is $O(1)$	\quad False \quad	4.	n^{50} is $O\left(1.1^{n}\right)$
:---	:---			

Notes:

- Do NOT ignore constants that are not multipliers:
$-n^{3}$ is $O\left(n^{2}\right)$: FALSE
-3^{n} is $O\left(2^{n}\right)$: FALSE
- When in doubt, refer to the definition)

1/07/2011

Big-Oh relates functions

Formally Big-Oh

We use O on a function $f(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

So $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
$-3 n^{2}+17$ and n^{2} have the same asymptotic behavior

Confusingly, we also say/write:
$-\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right)=O\left(n^{2}\right)$
But we would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$
Definition: $g(n)$ is in $\mathrm{O}(f(n))$ iff there exist positive constants c and n_{0} such that

$g(n) \leq c f(n) \quad$ for all $n \geq n_{0}$

To show $g(n)$ is in $O(f(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lower-order terms"

- Example: Let $g(n)=3 n^{2}+17$ and $f(n)=n^{2}$
$c=5$ and $n_{0}=10$ is more than good enough

This is "less than or equal to"

- So $3 n^{2}+17$ is also $O\left(n^{5}\right)$ and $O\left(2^{n}\right)$ etc.

Using the definition of Big-Oh (Example 1)

For $g(n)=4 n \& f(n)=n^{2}$, prove $g(n)$ is in $O(f(n))$

- A valid proof is to find valid $c \& n_{0}$
- When $n=4, g(n)=16 \& f(n)=16$; this is the crossing over point
- So we can choose $n_{0}=4$, and $c=1$
- Note: There are many possible choices: ex: $n_{0}=78$, and $c=42$ works fine

The Definition: $g(n)$ is in $O(f(n))$ iff there exist positive constants c and n_{0} such that
$\mathrm{g}(n) \leq \boldsymbol{c} \mathbf{f}(n)$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\boldsymbol{0}}$
1/07/2011

What's with the c ?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:
$g(n)=7 n+5$
$f(n)=n$
- These have the same asymptotic behavior (linear),
so $g(n)$ is in $O(f(n))$ even though $g(n)$ is always larger
- There is no positive n_{0} such that $g(n) \leq f(n)$ for all $n \geq n_{0}$
- The ' c ' in the definition allows for that:

$$
\mathrm{g}(n) \leq c \mathrm{f}(n) \quad \text { for all } n \geq n_{0}
$$

- To prove $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{f}(\mathrm{n}))$, have $\mathrm{c}=12, \mathrm{n}_{0}=1$

Big Oh: Common Categories

From fastest to slowest
$O(1) \quad$ constant (same as $O(k)$ for constant k)
$O(\log n) \quad$ logarithmic
$O(n) \quad$ linear
$\mathrm{O}(\mathrm{n} \log n) \quad$ " $\mathrm{n} \log n "$
$O\left(n^{2}\right) \quad$ quadratic
$O\left(n^{3}\right) \quad$ cubic
$O\left(n^{k}\right) \quad$ polynomial (where is k is an constant)
$O\left(k^{n}\right) \quad$ exponential (where k is any constant >1)
Usage note: "exponential" does not mean "grows really fast", it
means "grows at rate proportional to k^{n} for some $k>1$ "

- A savings account accrues interest exponentially ($k=1.01$?)

Regarding use of terms

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- People often say $O()$ to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
- Since $f(n)=n$ is also $O\left(n^{5}\right)$, it's tempting to say "this algorithm is exactly $O(n)$ "
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than - Example: sum is $O\left(n^{2}\right)$ but not $O(n)$
- "little-omega": like "big-Omega" but strictly greater than - Example: sum is $\omega(\log n)$ but not $\omega(n)$

1/07/2011

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
- Common: $\theta(\log n)$ running-time in the worst-case
- Less common: $\theta(1)$ in the best-case (item is in the middle)
- Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
- Less common (but very good to know): the find-in-sorted array problem is $\Omega(\log n)$ in the worst-case
- No algorithm can do better (without parallelism)
- A problem cannot be $O(f(n))$ since you can always find a
slower algorithm, but can mean there exists an algorithm

Other things to analyze

- Space instead of time
- Remember we can often use space to gain time
- Average case
- Sometimes only if you assume something about the distribution of inputs
- See CSE312 and STAT391
- Sometimes uses randomization in the algorithm
- Will see an example with sorting; also see CSE312
- Sometimes an amortized guarantee
- Will discuss in a later lecture

Summary

Analysis can be about:

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for large \boldsymbol{n} and is independent of any computer / coding trick
- The problem or the algorithm (usually algorithm)
- Time or space (usually time)
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- But the "cross-over" point is around 5 * 10^{17}
- So if you have input size less than 2^{58}, prefer $n^{1 / 10}$
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)
- Comparing O() for small \boldsymbol{n} values can be misleading
- Quicksort: O(nlogn) (expected)
- Insertion Sort: $O\left(n^{2}\right)$ (expected)
- Yet in reality Insertion Sort is faster for small n's
- We'll learn about these sorts later

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory \& mathematics
- Examine the algorithm itself, mathematically, not the implementation
- Reason about performance as a function of n
- Be able to mathematically prove things about performance
- Yet, timing has its place
- In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
- Ex: Benchmarking graphics cards
- We will do some timing in project 3 (and in 2, a bit)
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

