

CSE332: Data Abstractions Lecture 3: Asymptotic Analysis

> Ruth Anderson Winter 2011

Announcements

- Room changes section and lecture, (see course web page) maybe still one change for section
- Project 1 phase A due next Wed Jan 12th
- Homework 1 due Friday Jan 14th at <u>beginning</u> of class
- Info sheets?
- Catalyst Survey

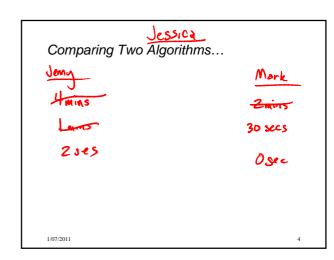
1/07/2011

11 2

Today

- How to compare two algorithms?
- · Analyzing code
- Big-Oh

1/07/2011



Gauging performance

- Uh, why not just run the program and time it?
 - Too much variability; not reliable:
 - Hardware: processor(s), memory, etc.
 - OS, version of Java, libraries, drivers
 - Programs running in the backgroundImplementation dependent
 - Choice of input
 - Timing doesn't really evaluate the algorithm; it evaluates an implementation in one very specific scenario

1/07/2011

5

Comparing algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

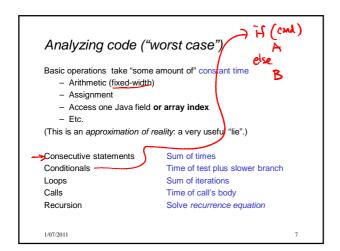
Large inputs (n) because probably any algorithm is "plenty good" for small inputs (if n is 10, probably anything is fast enough)

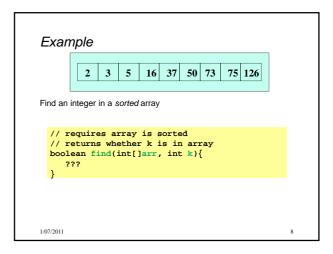
Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

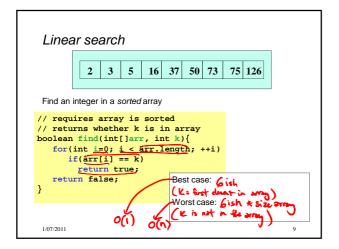
Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

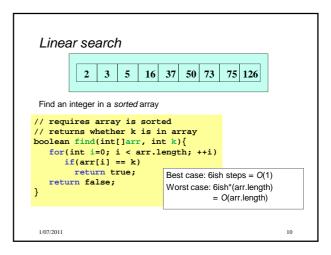
Can do analysis before coding!

/07/2011









```
Best case: 8ish steps = O(1)
Worst case: \(\overline{T}(n) = 10ish + \overline{T}(n/2)\) where \(n \) is hi-lo

• O(log \(n\)\) where \(n \) is array.length

• Solve \(recurrence \) equation to know that...

// requires array is sorted
// returns whether \(k \) is in array
boolean \(\overline{Ind}(\) int[]\(\overline{Iarr}, \) int \(k)\{\)
\(\text{return help}(\) arr.length);
\(\)\}

boolean \(\overline{Ind}(\) int[]\(\overline{Iarr}, \) int \(k, \) int \(\overline{Int}(\) int \(\overline{Iarr}, \) int \(k, \) int \(\overline{Int}(\) int \(\overline{Iarr}, \) int \(k, \) int \(\overline{Int}(\) int \(\overline{Iarr}, \) int \(k, \) int \(\overline{Iarr}, \) in
```

14

Solving Recurrence Relations

- 1. Determine the recurrence relation. What is the base case? T(n) = 10 + T(n/2)T(1) = 8 isk
- "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

$$T(n) = 10 + (10 + T(\frac{n}{4}))$$

= 10 + (10 + (10 + $T(\frac{n}{4}))$)

Solving Recurrence Relations

- 1. Determine the recurrence relation. What is the base case? T(n) = 10 + T(n/2)T(1) = 8
- "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

```
T(n) = 10 + 10 + T(n/4)
     = 10 + 10 + 10 + T(n/8)
     = 10k + T(n/(2^k))
```

- 3. Find a closed-form expression by setting *the number of expansions* to a value which reduces the problem to a base case
 - $n/(2^k) = 1$ means $n = 2^k$ means $k = \log_2 n$
 - So $T(n) = 10 \log_2 n + 8$ (get to base case and do it)
 - So T(n) is $O(\log n)$

1/07/2011

Ignoring constant factors

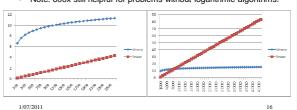
- So binary search is $O(\log n)$ and linear is O(n)
 - But which is faster
- · Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - And could depend on size of n
- But there exists some n_0 such that for all $n > n_0$ binary search wins
- Let's play with a couple plots to get some intuition...

1/07/2011

15

Example

- · Let's try to "help" linear search
 - Run it on a computer 100x as fast (say 2010 model vs. 1990)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!



Another example: sum array

Two "obviously" linear algorithms: T(n) = O(1) + T(n-1)

```
int sum(int[] arr){
  int ans = 0;
  for(int i=0; i<arr.length; ++i)
    ans += arr[i];
  return ans;
}</pre>
Iterative:
```

int sum(int[] arr){ return help(arr,0); Recursive: - Recurrence is int help(int[]arr,int i) { if(i==arr.length) return 0; k + k + ... + kfor n times return arr[i] + help(arr,i+1);

1/07/2011

What about a binary version?

```
int sum(int[] arr){
   return help(arr,0,arr.length);
fint help(int[] arr, int lo, int hi) {
   if(lo=hi)    return 0;
   if(lo=hi-1)    return arr[lo];
   int mid = (hi+lo)/2;
   return help(arr,lo,mid) + help(arr,mid,hi);
```

Recurrence is T(n) = O(1) + 2T(n/2)

- -1+2+4+8+... for log *n* times
- $-2^{(\log n)}-1$ which is proportional to n (definition of logarithm)

Easier explanation: it adds each number once while doing little else

"Obvious": You can't do better than O(n) – have to read whole array

Parallelism teaser

But suppose we could do two recursive calls at the same time
 Like having a friend do half the work for you!

- If you have as many "friends of friends" as needed the recurrence is now $T(n) = O(1) + \frac{1}{1}T(n/2)$
 - O(log n): same recurrence as for find

1/07/2011

19

21

Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

T(n) = O(1) + T(n-1)	linear
T(n) = O(1) + 2T(n/2)	linear
T(n) = O(1) + T(n/2)	logarithmic
T(n) = O(1) + 2T(n-1)	exponential
T(n) = O(n) + T(n-1)	quadratic
T(n) = O(n) + T(n/2)	linear
T(n) = O(n) + 2T(n/2)	O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an *n*-by-*m* matrix in O(nm)

1/07/2011 20

Asymptotic notation

About to show formal definition, which amounts to saying:

- 1. Eliminate low-order terms
- 2. Eliminate coefficients

Examples:

1/07/2011

Examples

True or false?

1. 4+3n is O(n)
2. n+2logn is O(logn)
3. logn+2 is O(1)
4. n⁵⁰ is O(1.1ⁿ)

True

True

- Notes:

 Do NOT ignore constants that are not multipliers:
 - n³ is O(n²) : FALSE - 3ⁿ is O(2ⁿ) : FALSE
- When in doubt, refer to the definition)

1/07/2011 22

Big-Oh relates functions

We use O on a function f(n) (for example n²) to mean the set of functions with asymptotic behavior less than or equal to f(n)

So $(3n^2+17)$ is in $O(n^2)$

 $-3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:

- $-(3n^2+17)$ is $O(n^2)$
- $-(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$

/07/2011

Formally Big-Oh

Definition: g(n) is in O(f(n)) iff there exist positive constants c and n_0 such that

 $g(n) \le c f(n)$

for all $n \ge n_0$

To show $\mathbf{g}(n)$ is in $O(\mathbf{f}(n))$, pick a \mathbf{c} large enough to "cover the constant factors" and n_0 large enough to "cover the lower-order terms" $\mathbf{s}(n^2)$

• Example: Let $g(n) = 3n^2 + 17$ and $f(n) = n^2$

c = 5 and $n_0 = 10$ is more than good enough

This is "less than or equal to"

- So $3n^2+17$ is also $O(n^5)$ and $O(2^n)$ etc.

/07/2011

3n²+17 ≤ C·n² 3n²+17 ≤ 5°n² 3·10²+17 ≤ 5·10² 3·11²+17 ≤ 5·11² 3·12²+17 ≤ 5⁴12

Using the definition of Big-Oh (Example 1)

For $g(n) = 4n \& f(n) = n^2$, prove g(n) is in O(f(n))

- A valid proof is to find valid c & n₀
- When n=4, g(n) =16 & f(n) =16; this is the crossing over point
- So we can choose $\mathbf{n_0} = 4$, and $\mathbf{c} = 1$
- Note: There are many possible choices:
 ex: n₀ = 78, and c = 42 works fine

The Definition: g(n) is in O(f(n)) iff there exist *positive* constants c and n_0 such that

 $g(n) \le c f(n)$ for all $n \ge n_{\theta}$.

1/07/2011

Using the definition of Big-Oh (Example 2)

For $g(n) = n^4 \& f(n) = 2^n$, prove g(n) is in O(f(n))

- A valid proof is to find valid c & n
- One possible answer: $n_0 = 20$, and c = 1

The Definition: g(n) is in O(f(n)) iff there exist *positive* constants c and n_{θ} such that

 $g(n) \le c f(n)$ for all $n \ge n_0$.

, ,

1/07/2011

What's with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:

g(n) = 7n+5

f(n) = n

- These have the same asymptotic behavior (linear), so g(n) is in O(f(n)) even though g(n) is always larger
- There is no positive n₀ such that g(n) ≤ f(n) for all n ≥ n₀
- The 'c' in the definition allows for that:
- $g(n) \le c f(n)$ for all $n \ge n_0$ • To prove g(n) is in O(f(n)), have c = 12, $n_0 = 1$

1/07/2011

27

Big Oh: Common Categories

From fastest to slowest

O(1) constant (same as O(k) for constant k)

 $O(\log n)$ logarithmic O(n) linear $O(n \log n)$ "n $\log n$ " $O(n^2)$ quadratic $O(n^3)$ cubic

 $O(n^3)$ cubic $O(n^k)$ polynomial (where is k is an constant) $O(k^\alpha)$ exponential (where k is any constant > 1)

Usage note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

1/07/2011 28

More Asymptotic Notation

- Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_0 such that $g(n) \le c f(n)$ for all $n \ge n_0$
- Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that $g(n) \ge f(n)$ for all $n \ge n_0$
- Tight bound: θ(f(n)) is the set of all functions asymptotically equal to f(n)
 - Intersection of O(f(n)) and $\Omega(f(n))$ (use different c values) g(x) is O(f(n)) if Both g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)) and g(x) = O(f(n)) are intersection of g(x) = O(f(n)).

Regarding use of terms

A common error is to say O(f(n)) when you mean $\theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bound
- Since f(n)=n is also O(n⁵), it's tempting to say "this algorithm is exactly O(n)"
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
 - Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than
 - Example: sum is $\underline{\omega}(\log n)$ but not $\omega(n)$

07/2011 30

What we are analyzing

- The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm
- Example: True statements about binary-search algorithm
 - Common: $\theta(\log n)$ running-time in the worst-case
 - Less common: $\theta(1)$ in the best-case (item is in the middle)
 - Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
 - Less common (but very good to know): the find-in-sortedarray **problem** is $\Omega(\log n)$ in the worst-case
 - No algorithm can do better (without parallelism)
 - A problem cannot be O(f(n)) since you can always find a slower algorithm, but can mean there exists an algorithm

1/07/2011

Other things to analyze

- Space instead of time
 - Remember we can often use space to gain time
- Average case
 - Sometimes only if you assume something about the distribution of inputs
 - See CSE312 and STAT391
 - Sometimes uses randomization in the algorithm
 - Will see an example with sorting; also see CSE312
 - Sometimes an amortized guarantee
 - Will discuss in a later lecture

1/07/2011 32

Summary

Analysis can be about:

- The problem or the algorithm (usually algorithm)
- · Time or space (usually time)
 - Or power or dollars or ...
- Best-, worst-, or average-case (usually worst)
- Upper-, lower-, or tight-bound (usually upper or tight)

1/07/2011

Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for <u>large n</u> and is independent of any computer / coding trick
 - But you can "abuse" it to be misled about trade-offs
 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically n^{1/10} grows more quickly
 - But the "cross-over" point is around 5 * 1017
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
- Comparing O() for small n values can be misleading
 - Quicksort: O(nlogn) (expected)
 - Insertion Sort: O(n2) (expected)
 - Yet in reality Insertion Sort is faster for small n's
 - We'll learn about these sorts later

1/07/2011

Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- · Yet, timing has its place
- In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
 - We will do some timing in project 3 (and in 2, a bit)
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful

1/07/2011