CSE 331

Software Design & Implementation
Section: Java Tools; Integers

CSE 331 Summer 2023

Reminders

« HW2 setup is important! See Panopto recordings on Canvas

Upcoming Deadlines

« HW2 due 11pm tonight (6/29)
* Prep. Quiz: HW3 due 11pm Tuesday (7/03)

CSE 331 Summer 2022

Last Time... Today's Agenda

 Specifications Java Tools
« Abstract Data Types (ADTS) Demo: Setup
 Integers and Bases

CSE 331 Summer 2022

HW2 Overview

« HW2 has a few different pieces—make sure to do them all!

« Written portion (submit on Gradescope)
« Reasoning with loops

« Coding portion (submit with GitLab tag)
« Setting up repo, simple Java code
« Looking at JUnit tests
« Debugging code
« Implementing code based on an invariant

The written portion can be done before you setup the software.

CSE 331 Summer 2023

Course resources

e We can't cover everything in an hour

e Read documentation: cs.uw.edu/331 > “Resources” tab
— “Project Software Setup”
— "Editing, Compiling, Running, and Testing Java Programs”
— “Version Control (Git) Reference”
— “Assignment Submission”

e The resources page is a treasure trove of helpful information!

CSE 331 Summer 2023

https://cs.uw.edu/331/
https://cs.uw.edu/331/tools/software-setup.html
https://cs.uw.edu/331/tools/editing-compiling.html
https://cs.uw.edu/331/tools/version-control.html
https://cs.uw.edu/331/tools/turnin.html

Software You Need

e Java 1/
— adoptium.net/temurin/archive
— Choose “Open)DK 17" and install jdk-17.0.7+7 with the JDK installer for your OS
— Windows: Select "Add to PATH"” and “Fix Registry” during install

e Intelli)
— jetbrains.com/idea
— Recommended: Ultimate version
e Comes in handy later in the course
e Free for students, see course website for link to license
— Install the latest version
o QGit
— git-scm.com

— (Might be slightly newer version than the XCode command line tools on macOS if you
have those installed)

— Comes with Git Bash on Windows - important!
CSE 331 Summer 2023

https://adoptium.net/temurin/archive/
https://www.jetbrains.com/idea/
https://git-scm.com/downloads

Warning: You must use JDK 17

e Must use DK version 17
— Be sure that's what you have installed!
— Download links in Resources webpage
— Use the Adoptium installers (only)

e An out-of-date JDK can lead to very confusing bugs
— No fun for either of us!

CSE 331 Summer 2023

Version control

Also called source control, revision control

e System to track changes in a project codebase
— Unit of change ~ lines inserted/deleted across some files

© git
A GitLab

o We'll use git and GitLab in this course, but alternatives exist
— Subversion, Mercurial, CVS
— Email, dropbox, thumbdrives (don't even think of doing this!)

Essential for managing software projects
— Maintain a history of code changes
— Revert to an older project state
— Merge changes from multiple sources

CSE 331 Summer 2023

Version control concepts

e Avrepository (“repo”) stores a project’s entire codebase
— Stored in multiple places and synchronized over the internet
— Tracks the files themselves and changes to them over time

e Each developer clones her own working copy of the repo
— Makes a local copy of the codebase, on her laptop/computer
— She modifies these files directly, with her IDE or text editor

e Each developer commits changes to her working copy
— Saves “a commit” to version control history
— Affects only the local working copy
— Must synchronize with remote repo to share commits each way

CSE 331 Summer 2023

Essential git concepts

e commit
— Saves (a subset of) the changes to the local repository '
— Has a brief message summarizing changes | J

Repository

+ push
— Sends local commits to the repository (on GitLab) -
u 17} cC e T
— Allows other computers to then “pull” those =/)
. t git v
commits/changes, see below. SUs E
a
e pull b, i 2
— Synchronizes working copy to match the remote repository ng"y"g
— clone =thefirst pull, also sets up the repository for the
first time

CSE 331 Summer 2023

Diagram of git usage

Starter Code

—

push

Working

Copy oull
—

HW Solutions

—
push
pull
—

) “remote”)
commit Backs Up Code commit
Sharing Between Computers

|

Course Staff Student

Grading Working on
New Assignments Assignments
Staff Tests

CSE 331 Summer 2023

Your GitLab repository

e We will push starter code to your repo for each homework
— After HW2, you'll get it by pulling

e Commit and push your code as you do the assignment
— Recommended process: edit, test, pull, commit, push

e Submit homework N by creating a tag “hwN-final”
— Check that you've committed and pushed all your work before you tag!

— Do not attach a message with the tag
— Example: “hw2-final” for HW2

e Without the right tag, your homework might not be graded!

CSE 331 Summer 2023

Example commit history

CSE 331 Summer 2023

Gradle: what is it ml‘a(ﬂe

Gradle is a tool for build automation
— Simplifies compiling, running, and testing a software project
— No need to install: included in the starter code!

Configured by the file build.gradle (and others) in your repo
— You shouldn’t modify this (can interfere with grading)!
— Ask the course staff for help if it got messed up accidentally.

Intelli) has built-in support to work with Gradle

e Gradle is how you run/validate your code on attu

CSE 331 Summer 2023

Gradle: how to use it

You can use Gradle at the command line or in Intelli) (recommended)
— Every homework assignment has a “name” - HW3 is “hw-setup”

Double-click tasks to run
them.

Make sure you're in the
right assignment’s task
list, each one has its own
tasks.

Gradle
S+ - || xTm|[4|F

(auto-import enabled)

poly

HW Name

Tasks :

Intelli) Gradle Panel

CSE 331 Summer 2023

*-

WS pPInguy sg

a|peig & usAe

seqeieq ([0

™~

Intelli)
Right
Sidebar

Development Workflow (Pipeline)

In general, only do this at the end of an assignment, but let's see how it works with
a practice tag.

1. Create the tag with the correct name. For now, use section-demo. See
assignment specs for the tags to use for each assignment.

— Git> New Tag
— Enter a tag name. (Tags are case-sensitive.)

— DO NOT include a message. (This can make the tags difficult to move later,
if you need to.)

— Tags are automatically attached to the current commit on the remote
repository (so you need to create tags after creating and pushing the
commit you want to tag in a separate transaction).

2. "push” the changes to tell GitLab about the tag (so the staff can see it!)
— Git > Push
— Make sure “Push Tags"” (bottom left) is checked. (Choose “All")

CSE 331 Summer 2023

Development Workflow (Pipeline)

GitLab Runners:
— Triggered when you push the tag

e Don't see a runner? Make sure you have the right tag name! (Tags are case-
sensitive)

— Runs some sanity checks (build, javadoc, and your tests) to look for common errors.

— If your runner fails, you should definitely fix it, then move the tag and check the
runner again. This ensures that the staff will be able to get your code to grade

— Open your GitLab project online, go to CI/CD O Pipelines (found in left hand options
bar)

— For section-demo, you'll see a message and the pipeline should pass.

— For actual assignments, you'll see it run checks on your assignment, then it'll either
pass or fail and print an error message on failure.

— Can also tag and remove tags via GitLab GUI if it is easier.

— Remember, just because the pipeline passes does not mean the autograder will pass.
It just means that we will be able to grade your homework

CSE 331 Summer 2023

Development Workflow Demo (6)

Verifying your tag is on the correct commit:
« GitLab Repository: Left Sidebar > Repository > Graph

This page provides a good visual
for which commit your tags are
attached to!

Also can check out Repository >Tags
(browse the files and check that the
SHA matches the one found in
Repository > Commits)

= hwd-final
- dec75b40s - HWI Frontend and Backend con

= hwg-final
o= @c79bs T - HW8, Edge parsing, displaying. §

= hw7-final

o= 7f52accs - HW7, Fixed Javadoc comments -

@-4DRelease feedback for hwo

DHNQ Frontend and Backend complete

DRelease feedback for hwd

DRelease feedback for hw?

DStaF-F push of files

DSta-F-F push of files

DHNB, Edge parsing, displaying, and Clear button
DHNB, basic functionality of the grid component
DSta-F-F push of files

DStaF-F push of files

DRelease feedback for hwé

DHN?, Fixed Javadoc comments

DHN?, Part 4 Model Implementation

[L]Hw7, part 3, Dijkstra and tests

DHN?, Part 1, Made the Path generic

DHH?, Part 1, Made the graph generic
DRelease feedback for hwé

DStaF-F push of files

N N N N N N R R N N N S .

CSE 331 Summer 2023

HW3

In HW3, you will be writing methods in the Natural class

Let's look at the specification:

/**

Represents an immutable, non-negative integer value
alondPipidtine) base in which to print its digits, which we
can think of as a pair (base, value).

For example, (2, 5) represents the integer 5 (in decimal),
but it will show its digits as 101 (in binary) when
printed.

We require that the base is at least 2 and at most 36 for
simplicity.

* % % % % % F % %

*/
public class Natural { .. }

CSE 331 Summer 2023

Converting Between Bases

1) Take the biggest multiple of a power of the new base you can fit.

2) Divide number by base power. This tells you how many times it can fit in, which
becomes your first digit (most significant digit)

3) Find the next biggest power of the new base you can fit in the remainder

CSE 331 Summer 2023

Different Base Examples

Let's take the value 10. We can use Convert 80 (base 10) to base 6:
the constructor:
- Largest power of 6 that fits: 6/2 = 36
public Natural (int base, - 36 fits 2 times (36 x2=72),so first dlglt s 2.
- Remainder 80-72=38
int value) {..}
- Largest power of 6 that fits: 621 =6
- 6fits 1 time (6 x 1 = 6), so second digitis 1.
new Natural (2, 10) =>“1010" - Remainder8-6=2

new Natural (10, 10) =>“10"

new Natural (3, 10) =>"101" - Largest power of 6 that fits: 6 A 0 = 1
1 fits 2 times (1 x 2 = 2), so third digit is 2.

N t l 4’ 10 => ‘:22’1]
new Natural () - Remainder 2 -2 =0, we are done

=212 (base 6)

CSE 331 Summer 2023

Natural Fields

Now, let's look at the fields, RI, and AF:
// Shorthand: b = this.base, D = this.digits, and

// n = this.digits.length

//

// RI: 2 <= b <= 36 and D '= null and n >= 1 and

// if n > 1, then D[n-1] '= 0 (no leading zeros) and
// for i = 0 .. n-1, we have 0 <= D[i] < b

//

// AF(this) = (b, D[O0] + D[1] b + D[2] b*2 + ... +

// D[n-1] b*{n-1})

private final int base; Least significant digits come first
private final int[] digits; in the array

new Natural (2, 10) =>]0, 1,0, 1] =>“1010"

CSE 331 Summer 2023

leftShift ()

Now let's take a look at the left shift method:
/**

* Produces a number whose digits, in this base, are the result of taking the
* digits of this number and shifting them to the left m positions, writing

* zeros in the now empty positions.

* @return (this.base, this.value * this.base”m)

*/
public Natural leftShift(int m) { .. }

How do we multiply something by 10 in base-10? Add a zero

How do we multiply something by 2 in binary? Add a zero

How do we multiply something by 100 (1072) in decimal? Add two zeroes

What's the pattern”? How can we do this in our code?

CSE 331 Summer 2023

leftShift ()

Now let's take a look at the left shift code:

public Natural leftShift(int m) ({
int[] digits = new int[this.digits.length + m];
System. arraycopy(this.digits, 0, digits, m, this.digits.length)
return new Natural (this.base, digits);

}

new Natural (10, 36) => [6,3] => leftShift(2)
=> ?

CSE 331 Summer 2023

leftShift ()

Now let's take a look at the left shift code:

public Natural leftShift(int m) ({
int[] digits = new int[this.digits.length + m];
System. arraycopy(this.digits, 0, digits, m, this.digits.length)
return new Natural (this.base, digits);

}

new Natural (10, 36) => [6,3] => leftShift(2)
=> [0,0,6,3] = (10,3600)

CSE 331 Summer 2023

leftShift ()

Now let's take a look at the left shift code:

public Natural leftShift(int m) ({
int[] digits = new int[this.digits.length + m];
System. arraycopy(this.digits, 0, digits, m, this.digits.length)
return new Natural (this.base, digits);

}

new Natural (10, 36) => [6,3] => leftShift(2)
=> [0,0,6,3] = (10,3600)

new Natural (2, 10) => [0,1,0,1] => leftShift(3)
=> ?

CSE 331 Summer 2023

leftShift ()

Now let's take a look at the left shift code:

public Natural leftShift(int m) ({
int[] digits = new int[this.digits.length + m];
System. arraycopy(this.digits, 0, digits, m, this.digits.length)
return new Natural (this.base, digits);

}

new Natural (10, 36) => [6,3] => leftShift(2)
=> [0,0,6,3] = (10,3600)

new Natural (2, 10) => [0,1,0,1] => leftShift(3)
=> [0,0,0,0,1,0,1] = (2,80)

Does this make sense?

CSE 331 Summer 2023

Before next lecture...

1. Do HW2 tonight! (reminder: deadline is 11pm)
- Written portion (submit PDF on Gradescope)
- Coding portion (push and tag on GitLab)

2. Read documentation: cs.uw.edu/331 > “Resources” tab
— “Project Software Setup”
— “Editing, Compiling, Running, and Testing Java Programs
— “Version Control (Git) Reference”
— "Assignment Submission”

n

3. Read getValue() proof in slides (recommended)

CSE 331 Summer 2023

https://cs.uw.edu/331/
https://cs.uw.edu/331/tools/software-setup.html
https://cs.uw.edu/331/tools/editing-compiling.html
https://cs.uw.edu/331/tools/version-control.html
https://cs.uw.edu/331/tools/turnin.html

getValue ()

public int getValue () {

int 1 = this.digits.length - 1;
int j = 0;
int val = this.digits[i];

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base
while (j !'= this.digits.length - 1) {
j=3+1;
i=13i-1;
val = val * this.base + this.digits[i];
}

// Post: val = D[O] + D[1] b+ D[2] b2+ ... + D[n-1] b*{n-1}
return val;

} What is this method doing?

CSE 331 Summer 2023

Proving getValue ()

Let's first prove that the invariant is established before the loop:

public int getValue () {
{{ RI, which includes n >= 1 }}
int i = this.digits.length - 1;

{{ ? }}
int j = 0;

int val = this.digits[1i];

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base

CSE 331 Summer 2023

Proving getValue ()

Let's first prove that the invariant is established before the loop:

public int getValue () {
{{ RI, which includes n >= 1 }}
int i = this.digits.length - 1;
{{n>1and i =n-11}}
int j = 0;
{{ 2 }}
int val = this.digits[1i];

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base

CSE 331 Summer 2023

Proving getValue ()

Let's first prove that the invariant is established before the loop:

public int getValue () {
{{ RI, which includes n >= 1 }}
int 1 = this.digits.length - 1;
{{n>1and i =n-11}}
int j = 0;
{{n>1and i=n-1and j = 0}}

int wval this.digits[i];

{{ ? }}

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,

// n = this.digits.length, and b = this.base

CSE 331 Summer 2023

Proving getValue ()

Let's first prove that the invariant is established before the loop:

public int getValue () ({

{{ RI, which includes n >=

11}

int 1 = this.digits.length - 1;
{{ n > 1 and i = n -1 }}
int j = 0;
{{n>1and i =n-1and j = 0}}
int val = this.digits[1i];
{{n>1and i =n-1and j = 0 and val = D[i]}}
Does this imply the invariant?
// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base

CSE 331 Summer 2023

Proving getValue ()

Let's prove the part after the loop:

public int getValue () ({

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j !'= this.digits.length - 1) {

}

{{ 2 }}

// Post: val = D[O0] + D[1] b+ D[2] b2 + ... + D[n-1] b*{n-1}

return val;

CSE 331 Summer 2023

Proving getValue ()

Let's prove the part after the loop:

public int getValue () ({

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ j=n-1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

}

{{ val = D[i] b*0 + D[i+1l] b*1 + .. + D[n-1] b*j and i+j = n-1
and j = n-1 }}

@ {{ ? }}

// Post: val = D[O0] + D[1] b+ D[2] b2 + ... + D[n-1] b*{n-1}
return val;

CSE 331 Summer 2023

Proving getValue ()

Let's prove the part after the loop:

public int getValue () ({

// Inv: val = D[i] b0 + D[i+1l] b1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,

// n = this.digits.length, and b = this.base

while (j != this.digits.length - 1) {

}
{{ val = D[i] b*0 + D[i+1l] b*1 + .. + D[n-1] b*j and i+j = n-1
and j = n-1 }}
& {{ val = D[0] b0 + D[1] b*1 + .. + D[n-1] b*{n-1} and i=0
and j = n-1 }}

// Post: val = D[O0] + D[1] b+ D[2] b2 + ... + D[n-1] b*{n-1}
return val;

CSE 331 Summer 2023

Proving getValue ()

Now let's prove the loop body:
public int getValue () ({

// Inv: val = D[i] b*0 + D[i+1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base
while (j !'= this.digits.length - 1) {
{{ ? }}
j=3+1;
i=1i-1;

val = val * this.base + this.digits[i];

} CSE 331 Summer 2023

Proving getValue ()

public int getValue () {

// Inv: val = D[i] b*0 + D[i+l1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base
while (j !'= this.digits.length - 1) {
{{ val = D[i]b”0 + D[i+1]b*1 + ... + D[n-1]1b*j and i+j = n-1
and j !'= n-1 }}
j =3+ 1;
{{ 2 }}
i=1i-1;

val = val * this.base + this.digits[i];

} - CSE 331 Summer 2023

Proving getValue ()

public int getValue () {

// Inv: val = D[i] b*0 + D[i+l1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base
while (j !'= this.digits.length - 1) {
{{ val = D[i]b”0 + D[i+1]b”*1 + ... + D[n-1]b*j and i+j = n-1
and j !'= n-1 }}
j =3+ 1;
{{ val = D[i]b”0 + D[i+1]b*1l + ... + D[n-1]b*{j-1} and i+j-1 = n-1
and j '= n }}
i=1i-1;

{{ ? }}

val = val * this.base + this.digits[i];

} - CSE 331 Summer 2023

Proving getValue ()

public int getValue () {

// Inv: val = D[i] b*0 + D[i+l1l] b*1 + ... + D[n-1] b*j and
// i+ 3j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base
while (j !'= this.digits.length - 1) {
{{ val = D[i]b”0 + D[i+1]b”*1 + ... + D[n-1]b*j and i+j = n-1
and j !'= n-1 }}
j =3+ 1;
{{ val = D[i]b”0 + D[i+1]b*1l + ... + D[n-1]b*{j-1} and i+j-1 = n-1
and j '= n }}
i=1i-1;
{{ val = D[i+1]1b”0 + D[i+2]b*1 + ... + D[n-11b*{j-1} and i+j = n-1
and j '=n }}

val = val * this.base + this.digits[i];
{{ 2 }}

CSE 331 Summer 2023

Proving getValue ()

public int getValue () {

// Inv: val = D[i] b0 + D[i+l1]] b1 + ... + D[n-1] b*j and
// i+ j=n-1, where D = this.digits,
// n = this.digits.length, and b = this.base
while (j != this.digits.length - 1) {
{{ val = D[i]b*0 + D[i+1]b*1 + ... + D[n-1]b*j and i+j = n-1
and j !'= n-1 }}
j =3+ 1;
{{ val = D[i]b*0 + D[i+1]1b*1 + ... + D[n-1]b*{j-1} and i+j-1 = n-1
and j '= n }}
i=1i-1;
{{ val = D[i+1]1b”0 + D[i+2]b*1 + ... + D[n-11b*{j-1} and i+j = n-1
and j '=n }}
val = val * this.base + this.digits[1i];
{{ (val - D[i])/b = D[i+1]b”0 + D[i+2]b”1 + ... + D[n-1]1b*{j-1}
and i+j = n-1 and j '= n }}

< {{?1}}

} ; CSE 331 Summer 2023

Proving getValue ()

public int getValue () {

// Inv: val

D[i] b*0 + D

// i+ 3j=n-1, whe
// n = this.digits.le
while (j !'= this.digits.le
{{ val = D[i]b”0 + D[i+1
j =3+ 1;
{{ val = D[i]b”0 + D[i+1
i=i-1;
{{ val = D[i+1]1b"0 + DJ[i
val = val * this.base +

{{ (val - D[i])/b = D[i+1l]b”0 + D[i+2]b"1 +

& {{val =D[i] + D[i+1]b”1 + ..

It's correct!

[i+1] b*1 + + D[n-1] b*j and
re D this.digits,
ngth, and b = this.base

ngth - 1) {
1b*1 + + D[n-1]1b*j and i+j = n-1
and j !'= n-1 }}
1b*1 + + D[n-1]1b*{j-1} and i+j-1 = n-1
and j '= n }}
+2]1b”*1 + + D[n-1]1b*{j-1} and i+j = n-1

and j '= n }}
this.digits[i];

+ D[n-1]1b*{j-1}
and i+j = n-1 and j '= n }}

+ D[n-1]1b*j and i+j = n-1 and j != n }}

CSE 331 Summer 2023

	Intro
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	Java Tools
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

	Demo: Setup
	Slide 16
	Slide 17
	Slide 18

	Integers
	Slide 19: HW3
	Slide 20: Converting Between Bases
	Slide 21: Different Base Examples
	Slide 22: Natural Fields
	Slide 23: leftShift()
	Slide 24: leftShift()
	Slide 25: leftShift()
	Slide 26: leftShift()
	Slide 27: leftShift()

	Conclusion
	Slide 28: Before next lecture...

	getValue
	Slide 29: getValue()
	Slide 30: Proving getValue()
	Slide 31: Proving getValue()
	Slide 32: Proving getValue()
	Slide 33: Proving getValue()
	Slide 34: Proving getValue()
	Slide 35: Proving getValue()
	Slide 36: Proving getValue()
	Slide 37: Proving getValue()
	Slide 38: Proving getValue()
	Slide 39: Proving getValue()
	Slide 40: Proving getValue()
	Slide 41: Proving getValue()
	Slide 42: Proving getValue()

