
CSE 331 Summer 2023

Software Design & Implementation
Topic: Real-world Systems

CSE 331

💬 Discussion: Should I make next lecture a work session?

CSE 331 Summer 2023

Reminders

• Will not accept any work after Aug. 18 (Friday) at 11pm
• Please fill out course evals ASAP

• Very valuable to me as a new instructor!

• Prep. Quiz: HW9 due Monday (8/13)
• HW9 due Thursday (8/17)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2023

Today’s Agenda
• End-of-quarter timeline

• Lectures
• Final Grades

• System Integration

• More Design Patterns!
• Creational
• Behavioral
• Structural

CSE 331 Summer 2023

Lecture Timeline

Last few lectures will be content-sparse. Will have lots of work time during class.

• Today’s lecture is about the high-level ideas needed to build massive systems

• Next lecture will include information on ethics in CS and a class discussion on
related topics

• Friday’s lecture will start with student demos and end with a course wrap-up

CSE 331 Summer 2023

Grading Timeline

• All work needs to be submitted to us by Friday at 11pm

• Course staff will finish grading HW9 and regrades by Sunday evening

• Grades will be posted on Canvas on late Sunday night
– You should check that these are consistent with what you expected!

• Soham will calculate final GPA based on these grades on Monday
– This is when I will account for extra credit and special circumstances

• Grades due to the university on Tuesday at noon

CSE 331 Summer 2023

What we didn’t do…

CSE331 is almost over… 

• Focus on software design, specification, testing, and implementation
– Absolutely necessary stuff for any nontrivial project

• But not sufficient for the real world: At least 2 key missing pieces
– Techniques for larger systems and development teams

• Major focus of CSE403
– Usability: interfaces engineered for humans

• Major focus of CSE440 – something you should take!

CSE 331 Summer 2023

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling and Planning ahead

• Implementation and testing order

CSE 331 Summer 2023

Architecture

Software architecture refers to the high-level structure of a software system
– A principled approach to partitioning the modules and controlling

dependencies and data flow among the modules

Common architectures have well-known names and well-known advantages and
disadvantages, just like design patterns

A good architecture ensures:
– Work can proceed in parallel
– Progress can be closely monitored
– The parts combine to provide the desired functionality

CSE 331 Summer 2023

Example architectures
Pipe-and-filter (think: iterators)

Filter Filter Filter SinkSource
pipe pipe pipe pipe

Message
store

Component

Component Component

Component

Component

Layered (think: levels of abstraction)Blackboard (think: callbacks)

CSE 331 Summer 2023

Good architecture considers many things!

• Scaling to support large numbers of __________

• Adding and changing features

• Integration of acquired components

• Communication with other software

• Easy customization

– Ideally with no programming

– Turning users into programmers is good

• Software to be embedded within a larger system

• Recovery from wrong decisions

– About technology

– About markets

CSE 331 Summer 2023

System architecture

• Have one!
– Basically lays down communication protocols and a project plan

• Subject it to serious scrutiny
– At relatively high level of abstraction

• Strive for simplicity
– Flat is good
– Know when to say no
– A good architecture rules things out

• Reusable components should be a design goal
– Software is capital
– This will not happen by accident
– May compete with other goals of the organization (but less so in the global view

and long-term)

CSE 331 Summer 2023

Things to Avoid

• Avoid featuritis
– Costs under-estimated

• Effects of scale discounted
– Benefits over-estimated

• A Swiss Army knife is rarely the right tool

Premature optimization is the root of all evil
 - Don Knuth

CSE 331 Summer 2023

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling and Planning ahead

• Implementation and testing order

CSE 331 Summer 2023

Build tools

• Building software requires many tools:
– Java compiler/JVM, C/C++ compiler, GUI builder, react/node/framework-du-jour,

device driver build tool, InstallShield, web server, database, scripting language
for build automation, parser generator, test generator, test harness

• Reproducibility is essential
• System may run on multiple devices

– Each has its own build tools
• Everyone needs to have the same toolset!

– Wrong or missing tool can drastically reduce productivity
• Hard to switch tools in mid-project

If you’re doing work the computer could do for you,
then you’re probably doing it wrong

CSE 331 Summer 2023

Version control (source code control)

• A version control system lets you:
– Collect work (code, documents) from all team members
– Synchronize team members to current source
– Have multiple teams work in parallel
– Manage multiple versions, releases of the software
– Identify regressions more easily

• Example tools:
– Git, Mercurial (Hg), Buck, Subversion (SVN), …

• Policies are even more important
– When to check in, when to update, when to branch and merge, how builds are

done
– Policies need to change to match the state of the project

• Always pull and diff before you commit

CSE 331 Summer 2023

Bug tracking

• An issue tracking system supports:
– Tracking and fixing bugs
– Identifying problem areas and managing them
– Communicating among team members
– Tracking regressions and repeated bugs

• Essential for any non-small or non-short project

• Example tools:
JIRA, Bugzilla, Flyspray, Trac, …
Hosted tools (GitLab, GitHub, Sourceforge, …)

CSE 331 Summer 2023

Bug tracking

Need to configure the bug tracking system to match the project
– Many configurations can be too complex to be useful

A good process is key to managing bugs
– An explicit policy that everyone knows, follows, and believes in

Bug
found

Prioritize Assign Replicate Examine

Discover Fix Verify Close

CSE 331 Summer 2023

Feature Rollout

CSE 331 Summer 2023

Feature Rollout

CSE 331 Summer 2023

Feature Rollout

ProductionCanary / StagingTesting

CSE 331 Summer 2023

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling and Planning ahead

• Implementation and testing order

CSE 331 Summer 2023

Scheduling
“More software projects have gone awry for lack of calendar time than for all other
causes combined.”

-- Fred Brooks, The Mythical Man-Month

Three central questions of the software business:
3. When will it be done?
2. How much will it cost?
1. When will it be done?!?

• Estimates are almost always too optimistic
• Estimates reflect what one wishes to be true
• We confuse effort with progress
• Progress is poorly monitored
• Slippage is not aggressively treated

CSE 331 Summer 2023

Scheduling is crucial but underappreciated

• Scheduling is underappreciated
– Made to fit other constraints

• A schedule is needed to make slippage visible
• Unrealistically optimistic schedules are a disaster

• The great paradox of scheduling:
– Everything takes twice as long as you think
– Hofstadter’s Law: It always takes longer than you expect, even when you take

into account Hofstadter's Law

CSE 331 Summer 2023

Effort is not the same as progress

Cost is the product of workers and time
– Reasonable approximation: All non-labor costs (everything but salary/benefits)

are zero (!)
– Easy to track

Progress is more complicated and hard to track

• People don’t like to admit lack of progress
– Progress is mis-estimated
– Think they can catch up before anyone notices

• Design the process and architecture to facilitate tracking

CSE 331 Summer 2023

How does a project get to be one year late?

One day at a time…
• It’s not the hurricanes that get you
• It’s the termites

– Arjun missed a meeting
– Sarah’s keyboard broke
– The compiler wasn’t updated
– …

If you find yourself ahead of schedule
– Don’t relax
– Don’t add features

CSE 331 Summer 2023

Dealing with slippage

• People must be held accountable
– Slippage is not inevitable
– Software should be on time, on budget, and on function

• Four options
– Add people – startup cost (“mythical staff-month”)
– Buy components – hard in mid-stream
– Change deliverables – customer must approve
– Change schedule – customer must approve

• How can you build an environment that supports people falling behind and helps
people catch up?

CSE 331 Summer 2023

Outline

• Software architecture

• Tools
– For build management
– For version control
– For bug tracking

• Scheduling and Planning ahead

• Implementation and testing order

CSE 331 Summer 2023

How to code and test your design

• You have a design and architecture
– Need to code and test the system

• Suppose the system has this module dependency diagram
– In what order should

you address the pieces?

A

B

F

C D

G

E

CSE 331 Summer 2023

Bottom-up

• Implement/test children first
– For example: G, E, B, F, C, D, A

• First, test G stand-alone (also E)
– Generate test data as discussed earlier
– Construct test drivers

• Next, implement/test B, F, C, D
• No longer unit testing: using lower-level modules

– A test of module M tests:
• whether M works, and
• whether modules that M calls behave as expected

– When a failure occurs, many possible sources of defect
– Integration testing is hard, irrespective of order

A

B

F

C D

G

E

CSE 331 Summer 2023

Building drivers

• Use a person
– Simplest choice, but also worst choice
– Errors in entering data are inevitable
– Errors in checking results are inevitable
– Tests are not easily reproducible

• Problem for debugging
• Problem for regression testing

– Test sets stay small, don’t grow over time
– Testing cannot be done as a background task

• Better alternative: Automated drivers in a test harness

CSE 331 Summer 2023

Top-down

• Implement/test parents (clients) first
– Here, we start with A

• To run A, build stubs to simulate B, C, and D

• Next, choose a successor module, e.g., B
– Build a stub for E
– Drive B using A

• Suppose C is next
– Can we reuse the stub for E?

(Maybe, but maybe need something different)

A

B

F

C D

G

E

CSE 331 Summer 2023

Implementing a stub
• Query a person at a console

– Same drawbacks as using a person as a driver

• Print a message describing the call
– Name of procedure and arguments
– Fine if calling program does not need result

• More common than you might think!

• Provide “canned” or generated sequence of results
– Often sufficient
– Generate using criteria used to generate data for unit test
– May need different stubs for different callers

• Provide a primitive (inefficient & incomplete) implementation
– Best choice, if not too much work
– Look-up table often works
– Sometimes called “mock objects” or fakes

CSE 331 Summer 2023

Catching design errors

• Top-down tests global decisions first
– E.g., what system does
– Most devastating place to be wrong
– Good to find early

• Bottom-up uncovers efficiency problems earlier
– Constraints often propagate downward
– You may discover they can’t be met at lower levels

• Neither dominates
– Useful to understand advantages/disadvantages of each
– Helps you to design an appropriate mixed strategy

CSE 331 Summer 2023

Amount of integration at each step

• Less is better

• Top-down adds one module at a time
– When an error is detected, either:

• Lower-level module doesn’t meet specification
• Higher-level module tested with bad stub

• Bottom-up adds one module at a time
– Connect it to multiple modules
– Thus integrating more modules at each step
– More places to look for error

CSE 331 Summer 2023

Amount of work

• Always need test harness

• Top-down
– Build stubs but not drivers

• Bottom-up
– Build drivers but not stubs

• Stubs are usually more work than drivers
– Particularly true for data abstractions

• Most of the work is in integration two different modules

A

B

F

C D

G

E

CSE 331 Summer 2023

One good way to structure an implementation

• Largely top-down
– But always unit test modules

• Bottom-up
– When stubs are too much work [just implement real thing]
– Low level module that is used in lots of places
– Low-level performance concerns

• Depth-first, visible-first
– Allows interaction with customers, like prototyping
– Lowers risk of having nothing useful
– Improves morale of customers and programmers

• Needn’t explain how much invisible work done
• Better understanding of where the project is
• Don’t have integration hanging over your head

CSE 331 Summer 2023

Perspective…

• Software project management is challenging
– There are still major disasters – projects that go way over budget, take much

longer than planned, or are abandoned after large investments
– Disasters usually stem from lack of discipline
– Always new challenges; we never build the same thing twice
– We’re better at it than we used to be, but not there yet

• (is “software engineering” real “engineering”?)

• Project management is a mix of hard and [so-called] soft skills

• We’ve only skimmed the surface
– Next: CSE 403, internship, your startup, ???

CSE 331 Summer 2023

Before next class...

1. Start on HW9
– Let me know if you want to demo extra credit

• Can be small things like a slightly different layout
• Can be big things like adding a whole new feature

2. Wrap-up any regrades for HW1-8
– Won’t accept late work after the last day of class

3. Please fill out course evals! I genuinely care about what you have to say.

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	EOQ Grading
	Slide 4: Lecture Timeline
	Slide 5: Grading Timeline
	Slide 6: What we didn’t do…

	Software Architecture
	Slide 7: Outline
	Slide 8: Architecture
	Slide 9: Example architectures
	Slide 10: Good architecture considers many things!
	Slide 11: System architecture
	Slide 12: Things to Avoid

	Tools
	Slide 13: Outline
	Slide 14: Build tools
	Slide 15: Version control (source code control)
	Slide 16: Bug tracking
	Slide 17: Bug tracking
	Slide 18: Feature Rollout
	Slide 19: Feature Rollout
	Slide 20: Feature Rollout

	Scheduling
	Slide 21: Outline
	Slide 22: Scheduling
	Slide 23: Scheduling is crucial but underappreciated
	Slide 24: Effort is not the same as progress
	Slide 25: How does a project get to be one year late?
	Slide 26: Dealing with slippage

	Implementation and testing order
	Slide 27: Outline
	Slide 28: How to code and test your design
	Slide 29: Bottom-up
	Slide 30: Building drivers
	Slide 31: Top-down
	Slide 32: Implementing a stub
	Slide 33: Catching design errors
	Slide 34: Amount of integration at each step
	Slide 35: Amount of work
	Slide 36: One good way to structure an implementation

	Conclusion
	Slide 37: Perspective…
	Slide 38: Before next class...

