
CSE 331 Summer 2023

Software Design & Implementation
Topic: HW9 and Servers

CSE 331

💬 Discussion: How would you design an interview process for hiring your peers?

CSE 331 Summer 2023

Reminders

• No extensions on HW9 (one late day only)
• Will not accept any work after Aug. 19 (Friday) at 11pm

• HW8 due Thursday (8/10)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2023

Today’s Agenda
• History of Design Patterns
• Creational Design Patterns

• Factories
• Builder
• Prototype
• Singleton
• Interning

• HW9 Overview
• Anonymous Inner Classes
• JSON
• Spark Java (demo)
• Fetch (demo)

Will finish today’s demo in section

CSE 331 Summer 2023

Homework 9 Overview

• Creating a Java server to add to your HW7 code
– Receives requests from the React app to calculate paths/send data.
– Not much code to write here thanks to MVC.

• Reuse your CampusMap class from HW7.

• Creating a new web GUI using React similar to HW8
– Display a map and draw paths between two points on the map.
– Similar to your React app in HW8 – but you may add more!
– Send requests to your Java server (new) to request building and path info.

CSE 331 Summer 2023

The Map Lines Stack (HW8)

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML and
JS”

CampusPaths

*Note: This is not Apache Spark

CSE 331 Summer 2023

The Campus Paths Stack (HW9)

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML + JS”

CampusPaths

*Note: This is not Apache Spark

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

SparkServer

CampusMap

Other Pathfinder Code

“How do I go from CSE
to MGH?”

“Here’s some JSON with
your data.”

*Note: This is not Apache Spark

CSE 331 Summer 2023

Any Questions?

• Done:
– HW9 Basic Overview

• Up Next:
– Anonymous Inner Classes
– JSON
– Spark Java
– Fetch

CSE 331 Summer 2023

Anonymous Inner Classes

• Helps put code closer to where it’s used.
• Makes sense when you aren’t re-using classes.

• The Example: sorting Strings by length instead of alphabetically.
– We need to make a Comparator – but how best to organize our code?
– Start with what we’re used to, then refine.

CSE 331 Summer 2023

Anonymous Inner Classes (Attempt 1)

public class StringSorter {

 public static void main(String[] args) {
 String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
 Arrays.sort(strings, new LengthComparator())
 System.out.println(Arrays.toString(strings));
 }
}

public class LengthComparator implements Comparator<String> {

 @Override
 public int compare(String s1, String s2) {
 return Integer.compare(s1.length(), s2.length());
 }
}

StringSorter.java

LengthComparator.java

CSE 331 Summer 2023

Attempt 1 – Pros/Cons
• Pros:

– Easy to reuse (assuming we want to).
• Cons:

– Polluting the namespace with a whole extra top-level class.
– Understanding the main method requires viewing two separate Java files.

CSE 331 Summer 2023

public class InnerStringSorter {

 public static void main(String[] args) {
 String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
 Arrays.sort(strings, new InnerLengthComparator());
 System.out.println(Arrays.toString(strings));
 }

 public static class InnerLengthComparator implements Comparator<String> {

 @Override
 public int compare(String s1, String s2) {
 return Integer.compare(s1.length(), s2.length());
 }
 }
}

Anonymous Inner Classes (Attempt 2)

InnerStringSorter.java

CSE 331 Summer 2023

Attempt 2 – Pros/Cons
• Pros:

– In a single Java file now – easier to read/understand.
– Still reusable outside this file, but more annoying syntax:

• new InnerStringSorter.InnerLengthComparator()

• new Path<E>.Segment()

• Cons:
– If we’re not reusing it, this is unnecessary indirection.

• Reader has to find and read a new class to understand what the code in
main means, even if we only ever do this sorting in one place.

CSE 331 Summer 2023

public class AnonymousStringSorter {

 public static void main(String[] args) {
 String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
 Arrays.sort(strings, new Comparator<String>() {

 @Override
 public int compare(String s1, String s2) {
 return Integer.compare(s1.length(), s2.length());
 }
 });
 System.out.println(Arrays.toString(strings));
 }
}

Anonymous Inner Classes (Attempt 3)

AnonymousStringSorter.java

CSE 331 Summer 2023

public class AnonymousStringSorter {

 public static void main(String[] args) {
 String[] strings = new String[]{"CSE331", "UW", "React", "Java"};
 Arrays.sort(strings, new Comparator<String>() {

 @Override
 public int compare(String s1, String s2) {
 return Integer.compare(s1.length(), s2.length());
 }
 });
 System.out.println(Arrays.toString(strings));
 }
}

Anonymous Inner Classes (Attempt 3)

Creating and
using the class, all
at once! No need
to give it a name.

AnonymousStringSorter.java

CSE 331 Summer 2023

Attempt 3 – Pros/Cons
• Pros:

– Still in a single Java file
– Puts the meaning of the code right where it’s being executed
– Very useful if you need to make many different Comparators

• Cons:
– Not reusable (there’s no name!)

• Anonymous inner classes only make sense in certain circumstances, like when
you need to make an object for one specific situation.

– Can be harder to read if overused.

• Note: Java 8 adds a whole bunch of additional ways to write these sorts of things.
– Not going to discuss them, but you’re welcome to learn and use them if you’d like!

CSE 331 Summer 2023

Any Questions?

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes

• Up Next:
– JSON
– Spark Java
– Fetch

CSE 331 Summer 2023

JSON

• JSON = JavaScript Object Notation
– Can convert JS Object → String, and String → JS Object
– Bonus: Strings are easy to send inside server requests/responses.

• We have a whole application written in Java so far:
– Reads CSV data, manages a Graph with campus data, uses Dijkstra’s to find paths.

• We’re currently writing a whole application in JavaScript:
– React web app to create an interactive GUI for your users

• Even if we get them to communicate, they store data differently. How can we make
sure that these two applications “speak the same language” ?

CSE 331 Summer 2023

Java ↔ JSON

public class SchoolInfo {

 String name = "U of Washington";
 String location = "Seattle";
 int founded = 1861;
 String mascot = "Dubs II";
 boolean isRainy = true;
 String website = "www.uw.edu";
 String[] colors = new String[]
 {"Purple", "Gold"};

}

Java Object JSON String

Use Gson (a library from Google) to
convert between them.

Tricky to go from JSON String to Java Object,
but we don’t need that in 331

Gson gson = new Gson();
SchoolInfo sInfo = new SchoolInfo()
String json = gson.toJson(sInfo);

{"name":"U of Washington",
"location":"Seattle",
"founded":1861,
"mascot":"Dubs II",
"isRainy":true,
"website":"www.uw.edu",
"colors":["Purple","Gold"]}

CSE 331 Summer 2023

let schoolInfo = {

 name: "U of Washington",
 location: "Seattle",
 founded: 1861,
 mascot: "Dubs II",
 isRainy: true,
 website: "www.uw.edu",
 colors: ["Purple","Gold"]

}

{"name":"U of Washington",
"location":"Seattle",
"founded":1861,
"mascot":"Dubs II",
"isRainy":true,
"website":"www.uw.edu",
"colors":["Purple","Gold"]}

Javascript Object JSON String

• Can convert between the two easily
• If the server replies with a JSON String, it’d be easy to use the data –

just turn it into a JS Object and read the fields out of the object!

JSON ↔ JS

CSE 331 Summer 2023

JSON – Key Ideas

How does this look in HW9?

1. Execute some Java code that produces a Java object

2. Use Gson to turn the Java objects into a JSON string

3. Send the JSON string over the network
– Gson can handle complicated structures!

4. Convert the JSON string into a Javascript object so we can use the data
– fetch can help us with that

CSE 331 Summer 2023

Any Questions?

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes
– JSON

• Up Next:
– Spark Java
– Fetch

CSE 331 Summer 2023

The Campus Paths Stack (HW9)

Google Chrome Dev Server/Compiler
“localhost:3000”

Started with npm start

Your React Application

http://localhost:3000

Your TypeScript Code

<Map>

<button>

Other Components

”Can I have the webpage?”

“Here’s some HTML + JS”

CampusPaths

*Note: This is not Apache Spark

Spark Java Server*
“localhost:4567”

Started with runSpark gradle task

SparkServer

CampusMap

Other Pathfinder Code

“How do I go from CSE
to MGH?”

“Here’s some JSON with
your data.”

*Note: This is not Apache Spark

CSE 331 Summer 2023

Spark Java

• Using the Spark Java framework – designed to make this short & easy.
– Don’t confuse with Apache Spark. Completely different, careful what you Google.

• Create the server by creating “routes” in the main method of your program.
– A route is an instruction that tells the server what to do when it gets a

particular request.
– Create Route objects and override their abstract handle() method
– Users can request information. The handle method gets information about

these requests, can set information about the response, then return
something that will be sent back to the user.

CSE 331 Summer 2023

What is a Request
• GET request is basically just a URL:

– When you type a URL into your browser, it makes a GET request to that URL,
the response to that request is the website itself (i.e., the HTML, JS, etc.).

• A ”GET” request says “Hey server, can I get some info about _____?”
– We’re going to make a request from inside Javascript to ask for data about

paths on campus.
– There are many kinds of requests - we just use GET as it’s the default for fetch

• Each “place” that a request can be sent is called an endpoint
– Your Java server will provide multiple endpoints – one for each kind of request

that your React app wants to make (e.g. find a path, get building info, etc...)

CSE 331 Summer 2023

Forming a Request

• Basic request with no extra data: “http://localhost:4567/getSomeData”
– A request to the “/getSomeData” endpoint in the server at “localhost:4567”
– “localhost” just means “on this same computer”
– “:4567” specifies a port number

• Sending extra information in a request is done with a query string:
– Add a “?”, then a list of “key=value” pairs. Each pair is separated by “&“.
– Query string might look like: “?start=CSE&end=KNE”

• Complete request looks like:
http://localhost:4567/findPath?start=CSE&end=KNE

Server Address: http://localhost:4567

CSE 331 Summer 2023

Forming a Request Server Address: http://localhost:4567

http://localhost:4567/getSomeData

http://localhost:4567/findPath?start=CSE&end=KNE

http://washington.edu/about.....

Hostname Port* Endpoint

Query Params*

*Port and query params are technically optional

CSE 331 Summer 2023

Our First Spark Route

public static void main(String[] args) {
 Spark.get("/hello-world", new Route() {
 @Override
 public Object handle(Request req, Response resp) throws Exception {
 return "Hello, Spark!";
 }
 });

 }

• Creating a new anonymous subclass of Route
– This is ok because we are probably only going to use this subclass once!

• Telling Spark to use that Route whenever it receives a GET request (Spark.get)
to the “/hello-world” endpoint.
– Responds to the request: “http://localhost:4567/hello-world”

CSE 331 Summer 2023

Demo Time!
• See that simple Spark route in action
• See a Spark route that can get info from a query parameter and use it
• See the node-fetch code that sends a request to the Spark endpoint that we just

went over and displays it on the page.

• There are more demos than we can go over in section – get the code from the
website to see everything.
– LOTS of useful info in there.

CSE 331 Summer 2023

Any Questions?

• Done:

– HW9 Basic Overview

– Anonymous Inner Classes

– JSON

– Spark Java

• Up Next:

– Fetch

CSE 331 Summer 2023

Fetch

• Used by JS to send requests to servers to ask for info.

• Uses Promises:
– Promises capture the idea of “it’ll be finished later.”
– We can "pause" the currently executing function while we wait for the promise

to complete
– Asking a server for a response can be slow, so Promises allow the browser to

keep working instead of stopping to wait.
– Getting the data out is a little more complicated.

• We’re using async/await syntax to deal with promises.

CSE 331 Summer 2023

Sending a Request

let responsePromise = fetch(“http://localhost:4567/findPath?start=CSE&end=KNE”);

• responsePromise is a Promise object
– Once the Promise “resolves,” it’ll hold whatever is sent back from the server.

• How do we get the data out of the Promise?
– We can await the promise’s resolution.
– await tells the browser that it can pause the currently-executing function and

go do other things. Once the promise resolves, it’ll resume where we left off.
– Prevents the browser from freezing while the request is happening

CSE 331 Summer 2023

Getting Useful Data

async sendRequest() {
 let responsePromise = fetch(“...”);
 let response = await responsePromise;

 let parsingPromise = response.json();
 let parsedObject = await parsingPromise;

 this.setState({
 importantData: parsedObject
 });
}

“This function is
pause-able”

Will eventually
resolve to an
actual JS object
based on the JSON
string.

Once we have the
data, store it in a
useful place.

CSE 331 Summer 2023

Error Checking

async sendRequest() {
 try {

 let response = await fetch(“...”);
 if (!response.ok) {
 alert(“Error!”);
 return;
 }
 let parsed = await response.json();
 this.setState({
 importantData: parsed
 });
} catch (e) {
 alert(“Error!”);
}

}

Every response has a
‘status code’
(e.g. 404 = Not Found)
This checks for 200 = OK

On a complete failure
(i.e. server isn’t running)
an error is thrown.

CSE 331 Summer 2023

Things to Know
• Can only use the await keyword in a function declared with the async keyword.

– async keyword means that a function can be “paused” while await-ing

• async functions automatically return a Promise that will eventually contain their
return value.
– This means that if you need a return value from the function you declared as

async, you’ll need to await the function call.
– But that means that the caller also needs to be async.

– Therefore (at least in CSE331) :
• Avoid returning values from async functions
• Do try to call setState to store the result and trigger an update

CSE 331 Summer 2023

• Error checking is important.
– If you forget, the error most likely will disappear without actually causing your

program to explode.
• This is BAD! Silent errors can cause tricky bugs.

– This happens because errors don’t bubble outside of promises, and the async
function you’re inside is effectively “inside” a promise.

– Means that if you don’t catch an exception, it’ll just disappear as soon as your
function ends.

More Things to Know

CSE 331 Summer 2023

• The return value of await response.json() will be of type any
– As we know, this is dangerous! (No TypeScript checks)

• To solve, we create an interface describing what the server will respond with (e.g. a
Path) and cast the value to that type:

interface Path { … }

const parsed: Path = await response.json() as Path;

• Note: This does not check that the value actually has this type
– If the server sends back something different, could crash later
– A true solution would check the object before casting

• Can get pretty complicated – not required for hw9
• If you're curious – libraries like io-ts can help with this

More More Things to Know

CSE 331 Summer 2023

Any Questions?

• Done:
– HW9 Basic Overview
– Anonymous Inner Classes
– JSON
– Spark Java

CSE 331 Summer 2023

Before next class...

1. Keep working on HW8!
– React is new, you will likely have many questions
– See examples from lecture + section for ideas

2. Go to section tomorrow
– Finish today’s demo

3. Wrap-up any regrades for HW1-7
– Won’t accept late work after the last day of class

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	HW9
	Slide 4: Homework 9 Overview
	Slide 5: The Map Lines Stack (HW8)
	Slide 6: The Campus Paths Stack (HW9)
	Slide 7: Any Questions?
	Slide 8: Anonymous Inner Classes
	Slide 9: Anonymous Inner Classes (Attempt 1)
	Slide 10: Attempt 1 – Pros/Cons
	Slide 11: Anonymous Inner Classes (Attempt 2)
	Slide 12: Attempt 2 – Pros/Cons
	Slide 13: Anonymous Inner Classes (Attempt 3)
	Slide 14: Anonymous Inner Classes (Attempt 3)
	Slide 15: Attempt 3 – Pros/Cons
	Slide 16: Any Questions?
	Slide 17: JSON
	Slide 18: Java ↔ JSON
	Slide 19: JSON ↔ JS
	Slide 20: JSON – Key Ideas
	Slide 21: Any Questions?
	Slide 22: The Campus Paths Stack (HW9)
	Slide 23: Spark Java
	Slide 24: What is a Request
	Slide 25: Forming a Request
	Slide 26: Forming a Request
	Slide 27: Our First Spark Route
	Slide 28: Demo Time!
	Slide 29: Any Questions?
	Slide 30: Fetch
	Slide 31: Sending a Request
	Slide 32: Getting Useful Data
	Slide 33: Error Checking
	Slide 34: Things to Know
	Slide 35: More Things to Know
	Slide 36: More More Things to Know
	Slide 37: Any Questions?

	Conclusion
	Slide 38: Before next class...

