CSE 331

Software Design & Implementation
Section: Graphs; Testing; Equality

CSE 331 Summer 2022

Reminders

* None!

Upcoming Deadlines

-« HW4 due 11pm tonight (7/14)
* Prep. Quiz: HW5 due 11pm Tuesday (7/18)

CSE 331 Summer 2022

Last Time... Today's Agenda

 Specifications « Graphs
« Abstract Data Types (ADTSs) « HWS5
« Representation Invariants « Specification tests
« Abstraction Functions * JUnit tests
e Testing « Review: Specifications

« Testing Heuristics
« JUnit (section)

CSE 331 Summer 2022

Graphs

CSE 331 Summer 2022

Graphs

CSE 331 Summer 2022

A graph represents relationships

A graph is a set of nodes and a set of edges between them.

Nodes may be labeled.
Edges may be labeled.

Edges may have a direction.

Node 1 Node 2
Edge A

Edge
Edge B J Edge D

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

xample: Road Map

& «Lynden Gl
% ermdale
“w. E:elingham T
. ¢ onaske
p 1 =Rapublic
Friday Haﬁ:lu_rr e * Concrete Winth (T h-emme
S Y Mount Weman |ntrru.p» Orrak
Oak Harbafs S = e—— wisps Okanogan
) B lﬂgnuraswlla_--__ = = Arlington « s prhem
Port Apgelss o Fart To = E1 . Bl erves ler
Saqui Ol LT arysville Pateros « Bridgeport
Forks o L et Grand Coule=
\ Chelan -Mansfield £ Cresion
- Enfiat aterville L Davvaingor Spokang
A | — oules Cily 3y Helghts
aghimera .
f . «Che
)), I tchee wEast Wenalches wWibson Creek eIy nghe =t
: " . Ephrata. Diebiessin - Spragug Eatah.
U gr_shl Dumw-m Lt o = Maoldumljl.
ke . Georg EE = ___R] s Sainl Jolne . et
Aberdesn aym tims . Warden. Lind- {335 Endicolts. Sameld”
Waetports i Dkl = Eatoriville opalbite Oithello e La Crosse =riE:
o Hdlion v
v Gz Mattawa « Wl M Pulimah,»
- *Souh Band Bokoh 4t «Kahloluz o
Pa EB- . Martgn akima GE] 7 1
inlock. = Starbuch =
. Winlo Tobods 0 Aomeroy Glarksion
ang Beach o ishy gy - i i
- Caate Rog AL unnyside Bichland Waitsburg Dayton Asatin
Cathlamels, Mabion « Herne) PHRazco
Languieie 4ielso :
Ao (5] DT P viala Walls \
Wioodland ool
W A
Baftle Grodnd Yot Goldandala e C} US Highways
| NEH S[wenmnr—_.—ﬂ.-__ " .
jmology.com VEMOWHCgmm--\Waslﬁugal A Wan . Interstate Highways] 50 KM 50 Miles

Nodes: intersections (cities)
Label: name/location

Edges: roads
Label: name/length

CSE 331 Summer 2022

Example: Airline Flights

seattle

sacramento salt lake city
3

long beach

san diego '

: sanfiago e | I|
santo domingo ® l _____________
Ceenicn gl

aguatili.lg san jug

Nodes: airports

Edges: flights
Label: airport code Label: cost/time

CSE 331 Summer 2022

Example: CSE courses

Nodes: Courses
Label: Course name

Edges: pointer to next class

Label: none

CSE 331 Summer 2022

You've used graphs before!

Singly linked Lists:
O—0—C

Nodes: Linked list node Edges: pointer to next node
Label: integer Label: none

CSE 331 Summer 2022

You've used graphs before!

Doubly linked Lists:

3 -25 0
Nodes: Linked list node Edges: pointers to prev/next nodes
Label: integer Label: none

CSE 331 Summer 2022

You've used graphs before!

Binary trees:

Nodes: Tree node Edges: pointers to children
Label: Integer Label: none

CSE 331 Summer 2022

An edge points from source to dest.

Each edge “points” from a source to a destination.
« Outgoing from source

. . . . N 1 Node 2
Incoming to destination ode Edge A
).) Edge |

Edge
Edge B J Edge D

Node 3
Node 4

Edge G

N.B.: We're only dealing with directed
graphs from here on out.

CSE 331 Summer 2022

An edge points from source to dest.

Each edge “points” from a source to a destination.

« Outgoing from source
* Incoming to destination

Edge Ais Node 1 - Node 2.
« QOutgoing from Node 1
* Incoming to Node 2

Node 1 Node 2
Edge A
» Edge |

Edge
Edge B J Edge D

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

An edge points from source to dest.

Each edge “points” from a source to a destination.

« Outgoing from source
* Incoming to destination

Edge Cis Node 2 - Node 3.
« Outgoing from Node 2
* Incoming to Node 3

Node 1 Node 2
Edge A
D Edge |

Edge
Edge B J Edge D

Node
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has children

A node’s outgoing edges point to its children.

Potentially empty set

Node 1 Node 2
Edge A
)) Edge |

Edge
Edge B J Edge D

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has children

A node’s outgoing edges point to its children.

+ Potentially empty set

Node 3 has three children:
 Node 1
« Node4
« Node5

Node 1 Node 2
Edge A
)) Edge |

Edge
Edge B J Edge D

Node
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has children

A node’s outgoing edges point to its children.

Node 2 has two children:

Potentially empty set

Node 2
Node 3

Node 1 Node 2
Edge A
) Edge |

Edge
Edge B J Edge D

Node
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has parents

A node’s incoming edges point from its parents.

Potentially empty set

Node 2
)) Edge |

Node 1
Edge A

Edge
Edge B J Edge D

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has parents

A node’s incoming edges point from its parents.

Node 4 has two parents:

Potentially empty set

Node 3
Node 5

Node 1 Node 2
Edge A
)) Edge |

Edge
Edge B J Edge D

Node
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has parents

A node’s incoming edges point from its parents.

Potentially empty set

Node 5 has one parent:

Node 3

Node 1 Node 2
Edge A
)) Edge |

Edge
Edge B J Edge D

Node
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has neighbors

A node’s neighbors are its children plus its parents.

+ Potentially empty set
Node 1 Node 2

Edge A
2)) Edge |

Edge
Edge B J Edge D

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has neighbors

A node’s neighbors are its children plus its parents.

+ Potentially empty set
Node 1 Node 2

Edge A
-)) Edge |

Edge
Edge B J Edge D

Node 2 has four neighbors: Node
* Node 1 (parent)
+ Node 2 (self-pointing)
« Node 3 (child)
Node 4 (parent)

Node 4

Edge G

Node 5

CSE 331 Summer 2022

A node has neighbors

A node’s neighbors are its children plus its parents.

+ Potentially empty set

Node 3 has four neighbors:

« Node 1 (child)

* Node 2 (parent)

* Node 4 (parent and child)
Node 5 (child)

Node 1 Node 2
Edge A
D Edge |

Edge
Edge B J Edge D

Node

Node 4

Edge G

Node 5

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.

« Potentially empty sequence

+ Might i Node 2
Might include a cycle Node 1 Edge A ode

+ Often want shortest) Edge |

Edge
Edge B d Edge D

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.

« Potentially empty sequence
« Mightinclude a cycle
« Often want shortest

Path from Node 1 to Node 5:

1. Edge A:Node 1 > Node 2
Edge C: Node 2 > Node 3
Edge E: Node 3 2 Node 4
Edge F: Node 4 &> Node 3
Edge G : Node 3 > Node 5

ARE I S

Node 2
» Edge |

Node 1
Edge A

Edge B Edge D

Node 3

Node 4

Node 5

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.

« Potentially empty sequence
* Mightinclude a cycle Node Node 2
« Often want shortest

Path from Node 1 to Node 1:

1. Edge A:Node 1 > Node 2
2. Edge C:Node 2 - Node 3
3. Edge B:Node 3 > Node 1

Node 5

CSE 331 Summer 2022

Paths between nodes

A path is a “chain” of edges from a source to a destination.
« Potentially empty sequence

« Mightinclude a cycle Node 1

« Often want shortest Q-

Node 2
) Edge |

Edge A

Edge B Edge D

Path from Node 2 to Node 2;
1. Edgel:Node 2 > Node 2

Node 3
Node 4

Edge G

Node 5

CSE 331 Summer 2022

Possible graph operations

Creators You may not want to include all of

« Construct an empty graph these operations in your graph
ADT design.

Observers

* Look up node(s) by label, children of, parents of, neighbors of, ...
* Look up edge(s) by label, incoming to, outgoing from, ...
 Iterate through all nodes

 Iterate through all edges

Mutators More observers

* Find path(s) from one node to another
* Find all reachable nodes

« Count indegree, outdegree

* |nsert/remove a node
* Insert/remove an edge

CSE 331 Summer 2022

HWS5: Preview

CSE 331 Summer 2022

HWS5: Design before implementation

- HWS5: Building an ADT for labeled, directed graphs
- Labeled: Nodes and edges have label values (Strings)

- Directed: Edges have direction
- Edges with same source and destination will have unique labels

» The exact interface of your Graph class is up to you
- So no given JUnit tests bundled with the starter code
- Reminder: Not a generic class.

« HWS5 is just designing and specifying the ADT
- HW®6 will be implementing it

CSE 331 Summer 2022

HWS5: What's Included

* Your submission for HW5 should include:
- Java class(es) that represent your ADT
« Each with method stubs
- Specifications for all classes and methods
- Tests for your ADT
* JUnit and Script tests (coming soon...)

* Your submission for HW5 should not include:
- Any implemented methods
- Anything private (fields, methods, classes, etc.)
* Including Rl and AF

CSE 331 Summer 2022

HWS5: Specifications in JavaDoc

Write class/method specifications in proper JavaDoc comments
- See “Resources” - “Class and Method Specifications”

* You can generate nice HTML pages cleanly presenting all your JavaDoc
specifications

- Placed in “build/docs/javadoc/”

« Thisis a great way to verify the JavaDoc is formatted correctly
- And to review/proofread your work...

« Let's look at the JavaDoc from HWA4... (demo)

CSE 331 Summer 2022

JavaDoc Demo

* Run the “javadoc” gradle task (in the documentation folder)

* Locate build/docs/javadoc/index.html, right-click,
Open In > a browser of your choice

- Look for formatting errors or missing components!

CSE 331 Summer 2022

HW5: Testing

The design process includes crafting a good test suite
— Script tests and JUnit tests

Script Tests (src/test/resources/testScripts/)
- Test script files name . test with corresponding name . expected
- Validate behavior intrinsic to high-level concept (abstract meaning)
- Tested properties should be expected of any solution to HW5

JUnit Tests (src/test/java/graph/junitTests/)
- JUnit test classes
- Validate behavior that can't be tested with script tests.

If you can validate a behavior using either test type, use a script test!

CSE 331 Summer 2022

HWS5: Script Tests

Each script test is expressed as text-based script foo. test
- One command per line, of the form: Command arg, arg, ...
- Script’s output compared against foo.expected
- Precise details specified in the homework
- Match format exactly, including whitespace!

Command (in foo. test) Output (in foo.expected)

CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label £rom parent to child in graph

ListNodes graph graph contains: label,
ListChildren graph parent the children of parent in graph are: child (labelgg) ...
This is comment text ... # This is comment text ...

CSE 331 Summer 2022

HW5: example. test

Create a graph
CreateGraph graphl

Add a pair of nodes el
AddNode graphl nl @ @
AddNode graphl n2

Add an edge
AddEdge graphl nl n2 el

Print all nodes in the graph
ListNodes graphl

Print all child nodes of nl with outgoing edge ListChildren
graphl nl

CSE 331 Summer 2022

HW5: example . expected

Create a graph
created graph graphl

Add a pair of nodes el
added node nl to graphl @ @

added node n2 to graphl

Add an edge
added edge el from nl to n2 in graphl

Print all nodes in the graph
graphl contains: nl n2

Print all child nodes of nl with outgoing edge the children of
nl in graphl are: n2(el)

CSE 331 Summer 2022

HWS5: Why Script Tests?

« Everyone's implementation could (will!) be different, so we (staff) cannot write JUnit
tests for everyone to use or to use for checking everyone’s code.

« We still need a way to test that you specify and implement the proper behavior, so
we use script tests that work regardless of the implementation.

« They test what the methods are doing, they don’t care how the methods are doing
it.

CSE 331 Summer 2022

HW5: Creating a script test

1. Write test steps as script commands in a file foo. test

2. Write expected (“correct”) output in a file foo.expected
- ...taking care to match the output format exactly

3. Place both files under src/test/resources/testScripts/

4. Run all such tests via the Gradle task scriptTests
- After class implemented and GraphTestDriver stubs filled

CSE 331 Summer 2022

HWS5: Test Commands vs Methods

* Your graph should not have the exact same interface as the script test
commands

— e.g. you should not have a method called AddNode() that adds a node
to the graph and prints out/returns the string “added node n1 to graph1”

— This wouldn’t make much sense for other graph clients!
» But you will need the ability to add a node!

« Later, we will need some way to map script test commands (AddNode
graphl nl)to some Java code that uses the methods of your graph class

— This is part of HW6; do not worry about for now

CSE 331 Summer 2022

HWS5: Script tests vs. JUnit Tests

Script tests will not cover every case for your graph:

— What if you have additional methods that can’t be tested by our script
test commands?

— What about “bad” input for your graph?
— What happens when you try to add the same node twice?

« We need some way to test cases that cannot be covered by our script tests

* For this, we use JUnit tests.

CSE 331 Summer 2022

HW5: Creating JUnit tests

1. Create JUnit test class in src/test/java/graph/junitTests/
2. Write a test method for each unit test

3. Run all such tests via the Gradle task junitTests

import org.junit.*;
import static org.junit.Assert.*;

/** Document class... */
public class FooTests {
/** Document method... */
@QTest
public void testBar() { ... /* JUnit assertions */ }

CSE 331 Summer 2022

HWS5: Creating JUnit tests

« Note: Your JUnit tests will fail in HW5, because you have not implemented the
actual methods yet
- The same goes for your script tests

* You will get them passing in HW6

CSE 331 Summer 2022

Specifications

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. (@Qeffects decreases balance by amount "f
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount ‘/’
C. @throws InsufficientFundsException if balance < amount)(

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) {
balance -= amount;

}

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. (@Qeffects decreases balance by amount)(
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount ‘/'
C. @throws InsufficientFundsException if balance < amount)(

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) {
if (balance >= amount) balance-=amount;

}

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. (@Qeffects decreases balance by amount)(
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount ‘/'
C. @throws InsufficientFundsException if balance < amount)(

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) {
if (amount < 0) throw new IllegalArgumentException() ;

balance -= amount;

CSE 331 Summer 2022

Specifications

Suppose we have a BankAccount class with instance variable balance. Consider the
following specifications (ignore @param):

A. (@Qeffects decreases balance by amount)(
B. @requires amount >= 0 and amount <= balance

@effects decreases balance by amount ‘/’
C. @throws InsufficientFundsException if balance < amount "'

@effects decreases balance by amount

Which specifications does this implementation meet?

void withdraw(int amount) throws InsufficientFundsException ({
if (balance < amount) throw new InsufficientFundsException() ;

balance -= amount;

CSE 331 Summer 2022

Testing

Consider the BankAccount class again. What are some good test cases?

public class BankAccount {
/** @return current balance of account */
public void balance() { .. }

/**
* @param amount to withdraw
* @requires amount >= 0
* @throws InsufficientFundsException
* if balance < amount
* @effects decreases balance by amount
*/
public void withdraw(int amount) { .. }
}

CSE 331 Summer 2022

Specification test heuristic:
« amount <= balance
« amount > balance

Boundary test heuristic:
e amount = balance
e amount > balance

Others?

Should we test amount < 0?

Before next lecture...

1. Do HW4 by tonight! (reminder: deadline is 11pm)
- Written portion (submit PDF on Gradescope)
- Coding portion (push and tag on GitLab)

2. Review JUnit testing slides discussed in the last section.

CSE 331 Summer 2022

