
CSE 331 Summer 2022

Software Design & Implementation

Topic: Design Patterns II

CSE 331

💬 Discussion: What advice would you give to a future CSE 331 student?

CSE 331 Summer 2022

Reminders

• No extensions on HW9 (one late day only)
• Will not accept any work after Aug. 19 (Friday) at 11pm

• Next Friday we will do project demos in class

• Prep. Quiz: HW9 due Monday (8/14)

• HW9 due Thursday (8/18)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• More Design Patterns!
• Creational
• Behavioral
• Structural

• HW9 Overview
• Anonymous Inner Classes
• JSON
• Spark Java (demo)
• Fetch (demo)

Finished demo in section

CSE 331 Summer 2022

Review: Factories

Goal: want more flexible abstractions for what class to instantiate

– instantiation is ubiquitous in Java...
yet Java constructors have many limitations

Factory method

– call a method to create the object

– method can do computation, return subtype, reuse objects

Factory object (also Builder)

– Factory has factory methods for some type(s)

– Builder has methods to describe object and then create it

Prototype

– every object is a factory, can create more objects like itself

– call clone to get a new object of same subtype as receiver

CSE 331 Summer 2022

Review: Factory Method

Factory method: call a method to create the object

– can return any subtype or an existing object

– can give it a name

new Matrix(double[] vals) { ... }

new Matrix(double[] vals, int rowSize) { ... }

versus Matrix.fromX

Matrix fromVector(double[] vals)

Matrix fromRowMajorEntries(double[] vals, int rowSize)

Matrix fromColMajorEntries(double[] vals, int colSize)

• Has two methods with same signature — impossible w/ constructors

• This approach can be used for any Java class.

CSE 331 Summer 2022

Review: Builder

Builder: object with methods to describe object and then create it

– fits well with immutable classes when clients want to add data one bit at a time

• Builder is immutable but then returns an immutable object

– helpful to fix problems with methods that take many arguments

• Builder as a replacement for named (non-positional) arguments

Example: StringBuilder

StringBuilder buf = new StringBuilder();

buf.append(“Total distance: ”);

buf.append(dist);

buf.append(“ meters”);

return buf.toString();

CSE 331 Summer 2022

Sharing

Second weakness of constructors: they always return a new object

Singleton: only one object exists at runtime

– factory method returns the same object every time

– (we’ve seen this already)

Interning: only one object with a particular (abstract) value exists at runtime

– factory method can return an existing object (not a new one)

– interning can be used without factory methods

• see String.intern

CSE 331 Summer 2022

Interning pattern

Reuse existing objects instead of creating new ones:

StreetSegment
without string
interning

StreetSegment with
string interningStreet

Segment

1–100

University
Way

02139

101–200

Street
Segment

02139

University
Way

Street
Segment

1–100

02139

101–200

Street
Segment

University
Way

CSE 331 Summer 2022

Interning mechanism

• Maintain a collection of all objects in use

• If an object already appears, return that instead

– (be careful in multi-threaded contexts)

HashMap<String, String> segNames;

String canonicalName(String n) {

if (segNames.containsKey(n)) {

return segNames.get(n);

} else {

segNames.put(n, n);

return n;

}

}

• Java builds this in for strings: String.intern()

Set supports

contains but not get

Why not Set<String> ?

CSE 331 Summer 2022

Interning pattern

• Benefits of interning:

1. May compare with == instead of equals()

• eliminates a source of common bugs!! Although still good to use .equals

2. May save space by creating fewer objects

• (space is less and less likely to be a problem nowadays)

• also, interning can actually waste space if objects are not cleaned up when
no longer needed

– there are additional techniques to fix that (“weak references”)

• Sensible only for immutable objects

CSE 331 Summer 2022

java.lang.Boolean

does not use the Interning pattern

public class Boolean {
private final boolean value;

// construct a new Boolean value
public Boolean(boolean value) {

this.value = value;
}

public static Boolean FALSE = new Boolean(false);
public static Boolean TRUE = new Boolean(true);

// factory method that uses interning
public static Boolean valueOf(boolean value) {

if (value) {
return TRUE;

} else {
return FALSE;

}
}

}

CSE 331 Summer 2022

Recognition of the problem

Javadoc for Boolean constructor:

Allocates a Boolean object representing the value argument.

Note: It is rarely appropriate to use this constructor. Unless a new instance is
required, the static factory valueOf(boolean) is generally a better choice. It is
likely to yield significantly better space and time performance.

Josh Bloch (JavaWorld, January 4, 2004):

The Boolean type should not have had public constructors. There's really no
great advantage to allow multiple trues or multiple falses, and I've seen
programs that produce millions of trues and millions of falses, creating
needless work for the garbage collector.

So, in the case of immutables, I think factory methods are great.

CSE 331 Summer 2022

GoF patterns: three categories

Creational Patterns are about the object-creation process

Factory Method, Abstract Factory, Singleton, Builder, Prototype, Interning …

Structural Patterns are about how objects/classes can be combined

Adapter, Bridge, Composite, Decorator, Façade, Proxy, …

Behavioral Patterns are about communication among objects

Command, Interpreter, Iterator, Mediator, Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE 331 Summer 2022

Structural patterns: Wrappers

Wrappers are a thin veneer over an encapsulated class

– modify the interface

– extend behavior

– restrict access

The encapsulated class does most of the work

Some wrappers have qualities of more than one of adapter, decorator, and proxy

Functionality Interface

Adapter same different

Decorator different same

Proxy same same

CSE 331 Summer 2022

Adapter

Real life example: adapter to go from US to UK power plugs

– both do the same thing

– but they have slightly interface expectations

Change an interface without changing functionality

– rename a method

– convert units

– implement a method in terms of another

Example: angles passed in radians vs. degrees

Example: use “old” method names for legacy code

CSE 331 Summer 2022

Adapter example: rectangles

Our code is using this Rectangle interface:

interface Rectangle {

// grow or shrink this by the given factor

void scale(float factor);

// move to the left or right

void translate(float x, float y);

}

But we want to use a library that has this class:

class JRectangle {

void scaleWidth(float factor) { ... }

void scaleHeight(float factor) { ... }

void shift(float x, float y) { ... }

}

CSE 331 Summer 2022

Adapter example: rectangles

Create an adapter that delegates to Rectangle:

class RectangleAdapter implements Rectangle {

private JRectangle rect;

public RectangleAdapter(JRectangle rect) {

this.rect = rect;

}

void scale(float factor) {

rect.scaleWidth(factor);

rect.scaleHeight(factor);

}

void translate(float x, float y) {

rect.shift(x, y);

}

}

CSE 331 Summer 2022

Adapters

• This sort of thing happens a lot

– unless two libraries were designed to work together,
they won’t work together without an adapter

• The example code uses delegation

– special case of composition where the outer object just forwards calls on to one
other object

• Adapters can also remove methods

• Adapters can (in principle) be written by subclassing

– but then all the usual warnings about subclassing apply if you override any
methods of the superclass

– your subclass could easily break when superclass changes

CSE 331 Summer 2022

Decorator

Add functionality without breaking the interface:

1. Add to existing methods to do something extra

• satisfying a stronger specification

2. Provide extra methods

Subclasses are often decorators

– but not always: Java subtypes are not always true subtypes

CSE 331 Summer 2022

Decorator example: Bordered windows

interface Window {

// rectangle bounding the window

Rectangle bounds();

// draw this on the specified screen

void draw(Screen s);

...

}

class WindowImpl implements Window {

...

}

CSE 331 Summer 2022

Bordered window implementations

class BorderedWindow1 extends WindowImpl {

void draw(Screen s) {

super.draw(s);

bounds().draw(s);

}

}

class BorderedWindow2 implements Window {

Window innerWindow;

BorderedWindow2(Window innerWindow) {

this.innerWindow = innerWindow;

}

void draw(Screen s) {

innerWindow.draw(s);

innerWindow.bounds().draw(s);

}

}

Delegation permits multiple
borders on a window, or a
window that is both
bordered and shaded

CSE 331 Summer 2022

A decorator can remove functionality

Remove functionality without changing the Java interface

– no longer a true subtype, but sometimes that is necessary

Example: UnmodifiableList

– What does it do about methods like add and put?

• throws an exception

• moves error checking from the compiler to runtime

Problem: UnmodifiableList is not a true subtype of List

Decoration via delegation can create a class with no Java subtyping relationship,
which is often desirable

• Java subtypes that are not true subtypes are confusing

• maybe necessary for UnmodifiableList though

CSE 331 Summer 2022

Proxy

• Same interface and functionality as the wrapped class

– so... uh... wait, what?

• Control access to other objects

– communication: manage network details when using a remote object

– locking: serialize access by multiple clients

– security: permit access only if proper credentials

– creation: object might not yet exist (creation is expensive)

• hide latency when creating object

• avoid work if object is never used

CSE 331 Summer 2022

Composite pattern

• Composite permits a client to manipulate either an atomic unit or a collection of
units in the same way

– no need to “always know” if an object is a collection of smaller objects or not

• Good for dealing with “part-whole” relationships

• Used by jQuery in JavaScript

• An extended example…

CSE 331 Summer 2022

Composite example: Bicycle

• Bicycle
– Wheel

• Skewer
– Lever
– Body
– Cam
– Rod

• Hub
• Spokes
• Nipples
• Rim
• Tape
• Tube
• Tire

– Frame
– Drivetrain
– ...

CSE 331 Summer 2022

Methods on components

interface BicycleComponent {

int weight();

public float cost();

}

class Skewer extends BicycleComponent {

float price;

public float cost() { return price; }

}

class Wheel extends BicycleComponent {

float assemblyCost;

Skewer skewer;

Hub hub;

...

public float cost() {

return assemblyCost + skewer.cost() + hub.cost() + ...;

}

}

CSE 331 Summer 2022

Composite example: Libraries

Library
Section (for a given genre)

Shelf
Volume
Page

Column
Word

Letter

interface Text {
String getText();

}
class Page implements Text {

String getText() {
... return concatenation of column texts ...

}
}

CSE 331 Summer 2022

Composite example: jQuery

• jQuery provides a function $ that returns one or many objects

– $(“p”) would return a collection of all <p> nodes

– $(“#foo”) would return the object with ID “foo”

• (or returns an empty collection if none exists)

• Calling a method on a jQuery object calls that method on all objects in the
collection:

– $(“p”).hide() would hide all the <p> nodes

– if foo is a node with id “foo”, then
foo.hide() has the same effect as $(“#foo”).hide()

CSE 331 Summer 2022

GoF patterns: three categories

Creational Patterns are about the object-creation process

Factory Method, Abstract Factory, Singleton, Builder, Prototype, …

Structural Patterns are about how objects/classes can be combined

Adapter, Bridge, Composite, Decorator, Façade, Proxy, …

Behavioral Patterns are about communication among objects

Command, Interpreter, Iterator, Mediator, Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE 331 Summer 2022

Representing Java code

x = foo * b + c / d;

x +

=

*

bfoo

/

dc

CSE 331 Summer 2022

Abstract syntax tree (AST) for Java code

class PlusOp extends Expression { // + operation

Expression leftExp;

Expression rightExp;

}

class VarRef extends Expression { // variable use

String varname;

}

class EqualOp extends Expression { // test a == b;

Expression leftExp;

Expression rightExp;

}

class CondExpr extends Expression { // a ? b : c

Expression testExp;

Expression thenExp;

Expression elseExp;

}

CSE 331 Summer 2022

Example and Type Hierarchy

• AST for a + b:

• Class hierarchy for Expression:

CSE 331 Summer 2022

Operations on abstract syntax trees

• Need to write code for each entry in this table

• Question: How should we partition our code into files?

– That is, do we group the code into rows or columns?

• Given an operation and an expression, how do we “find” the proper code?

Types of Objects

CondExpr EqualOp

Operations
typeCheck

print

CSE 331 Summer 2022

Interpreter and procedural approaches

Interpreter: collects code for similar
objects, spreads apart code for similar
operations

– easy to add new types

– hard to add operations

– Composite pattern

Procedural: collects code for similar
operations, spreads apart code for
similar objects

– easy to add operations

– hard to add new types

– Visitor pattern

(See CSE341 for an extended take on this question:
• statically typed functional languages help with procedural

whereas statically typed OO languages help with interpreter)

CSE 331 Summer 2022

Operations on abstract syntax trees

Need to write code for each entry in this table

Consider four operations:

void print(CondExpr e);

void print(EqualOp e);

void typeCheck(CondExpr e);

void typeCheck(EqualOp e);

Types of Objects

CondExpr EqualOp

Operations
typeCheck

print

CSE 331 Summer 2022

Interpreter approach

Add a method to each class for each supported operation
abstract class Expression {

...

Type typeCheck();

String print();

}

class EqualOp extends Expression {

...

Type typeCheck() { ... }

String print() { ... }

}

class CondExpr extends Expression {

...

Type typeCheck() { ... }

String print() { ... }

}

Suppose I have some object
Expression e;

Dynamic dispatch chooses the
right implementation, for a
call like e.typeCheck()

Overall type-checker spread
across classes

Objects

CondExpr EqualOp

typecheck

print

CSE 331 Summer 2022

Procedural approach

Create a class per operation, with a method per operand type

class TypeChecker {

Type typeCheck(CondExpr e) {

Type condType = typeCheck(e.condition);

Type thenType = typeCheck(e.thenExpr);

Type elseType = typeCheck(e.elseExpr);

if (condType.equals(BoolType) && thenType.equals(elseType)))

return thenType;

else

return ErrorType;

}

Type typeCheck(EqualOp e) {

...

}

}

How to invoke the right
method for an
Expression e?

Objects

CondExpr EqualOp

typecheck

print

CSE 331 Summer 2022

class Typechecker {

...

Type typeCheck(Expression e) {

if (e instanceof PlusOp) {

return typeCheck((PlusOp)e);

} else if (e instanceof VarRef) {

return typeCheck((VarRef)e);

} else if (e instanceof EqualOp) {

return typeCheck((EqualOp)e);

} else if (e instanceof CondExpr) {

return typeCheck((CondExpr)e);

} else ...

...

}

}

Definition of typeCheckExpr
(using procedural approach)

Maintaining this code is tedious
and error-prone

• No help from type-checker
to get all the cases

Cascaded if tests are likely to run
slowly (in Java)

Need similar code for each
operation

CSE 331 Summer 2022

Operations on abstract syntax trees

Consider four operations:

void print(CondExpr e);

void print(EqualOp e);

void typeCheck(CondExpr e);

void typeCheck(EqualOp e);

Almost always, we know the operation but not the expression type:

• We want to print some Expression e

• We want to typeCheck some Expression e

CSE 331 Summer 2022

Interpreter approach

Java (or any OO) makes it easy to group by expression:

e.print()

This will dispatch to one of these depending on type of e:

class CondExpr {

void print() {..}

void typeCheck() {..}

}

class EqualOp {

void print() {..}

void typeCheck() {..}

}

Objects

CondExpr EqualOp

typecheck

print

CSE 331 Summer 2022

Procedural approach

Expression e = ...;

Printer p = new Printer();

In an OO language, there is no easy way to make

p.process(e);

dispatch to one of these methods of Printer:

class Printer {

void process(CondExpr e);

void process(EqualOp e);

}

Objects

CondExpr EqualOp

typecheck

print

Is there a way to turn print(e)
into e.print()?

CSE 331 Summer 2022

Procedural approach

p.process(e);

Java let’s you dispatch on the type of e but not p!
– (some other languages have ways to do this)
– (weirdly, this is easier in C than in Java)

Fix this in Java by using double dispatch:
• call a special method on e, passing in p as a parameter

– inside that method, the type of e is known
• now call back to the right method on p

Objects

CondExpr EqualOp

typecheck

print

CSE 331 Summer 2022

Procedural approach

interface Procedure {

void process(CondExpr e);

void process(EqualOp e);

}

interface Expression {

// Call the appropriate process for this expression

void perform(Procedure p);

}

class CondExpr implements Expression {

void perform(Procedure p) { p.process(this); }

}

class EqualOp implements Expression {

void perform(Procedure p) { p.process(this); }

}

Objects

CondExpr EqualOp

typecheck

print

CSE 331 Summer 2022

Procedural approach

class Printer implements Procedure {

void process(CondExpr e) { print it }

void process(EqualOp e) { print it }

}

Now write:

Expression e = ...;

Printer p = new Printer();

e.perform(p);

E.g., if e is an EqualOp, then we get a call chain:

here ~> EqualOp.perform ~> Printer.process

Objects

CondExpr EqualOp

typecheck

print

CSE 331 Summer 2022

Traversing composites

• Goal: perform operations on all parts of a composite

• Idea is to generalize the notion of an iterator: process the components in an order
appropriate for the application

• This is really important when writing a compilers

– (doesn’t come up nearly as much elsewhere though)

• Example of patterns to work around limitations of OOP

• Example: arithmetic expressions in Java

– how do we represent, say, x = foo*b + c/d;

– how do we traverse/process these expressions?

CSE 331 Summer 2022

Visitor pattern:
A variant of the procedural pattern

• Nodes (objects in the hierarchy) accept visitors for traversal

• Visitors visit nodes (objects)

class SomeExpression extends Expression {

void accept(Visitor v) {

for each child of this node {

child.accept(v);

}

v.visit(this);

}

}

class SomeVisitor extends Visitor {

void visit(SomeExpression n) { perform work on n }

}

n.accept(v) traverses the structure
rooted at n, performing v's operation
on each element of the structure

CSE 331 Summer 2022

Example: accepting visitors
class VarOp extends Expression {

void accept(Visitor v) {

v.visit(this);

}

}

class EqualsOp extends Expression {

void accept(Visitor v) {

leftExp.accept(v);

rightExp.accept(v);

v.visit(this);

}

}

class CondOp extends Expression {

void accept(Visitor v) {

testExp.accept(v);

thenExp.accept(v);

elseExp.accept(v);

v.visit(this);

}

}

First visit all children

Then pass “self” back to visitor

The visitor has a visit method for each
kind of expression, thus picking the
right code for this kind of expression

• Overloading makes this look
more magical than it is…

Lets clients provide unexpected visitors

CSE 331 Summer 2022

Sequence of calls to accept and visit

a.accept(v)

b.accept(v)

d.accept(v)

v.visit(d)

e.accept(v)

v.visit(e)

v.visit(b)

c.accept(v)

f.accept(v)

v.visit(f)

v.visit(c)

v.visit(a)

Sequence of calls to visit: d, e, b, f, c, a

a

ed

cb

f

CSE 331 Summer 2022

Example: Implementing visitors

class TypeCheckVisitor implements Visitor {

void visit(VarOp e) { … }

void visit(EqualsOp e) { … }

void visit(CondOp e) { … }

}

class PrintVisitor implements Visitor {

void visit(VarOp e) { … }

void visit(EqualsOp e) { … }

void visit(CondOp e) { … }

}

Now each operation has its cases
back together

And type-checker should tell us if
we fail to implement an abstract
method in Visitor

Again: overloading just a nicety

Again: An OOP workaround for
procedural pattern
• Because language/type-checker

is not instance-of-test friendly

CSE 331 Summer 2022

Before next class...

1. Start on HW9

– React is new, you will likely have many questions

– See examples from lecture + section for ideas

2. Wrap-up any regrades for HW1-8

– Won’t accept late work after the last day of class

