CSE 331

Software Design & Implementation
Topic: HTML and TypeScript

(=) Discussion: What can you do to make a team work smoothly?

CSE 331 Summer 2022

Reminders

* |I'm out this weekend - make sure to email course staff
« Watch TS Introduction video

Upcoming Deadlines

* Prep. Quiz: HW7 due Monday (8/01)
« HW7 due Thursday (8/04)

CSE 331 Summer 2022

Last Time...

Today's Agenda

Generic Methods
Generics and Subtyping
Arrays

Type Bounds

Wildcards

Type Erasure

Callbacks

« Event-driven Programming
« A Short History of Web

« HTML

« TypeScript

CSE 331 Summer 2022

A sorting example...

Consider the following sorting method:

public static void sort(List<Integer> 1lst) {
for (int 1 = 0; 1 '= n; i++) {
for (int § = 0; j '= n - 1; j++) {
if (1lst.get(j) > 1lst.get(j + 1)) {
swap (1st, j, jJ + 1);

What could we improve about this?

CSE 331 Summer 2022

A sorting example...

Consider the following sorting method:

public static void sort(List<?> 1lst) {
for (int 1 = 0; 1 '= n; i++) {
for (int J =0; jJ '=n - 1; j++) {
if (1lst.get(j) > 1lst.get(j + 1)) {
swap (1st, j, jJ + 1);

But wait - this doesn’t compile! Why?

CSE 331 Summer 2022

Achievement unlocked: Callbacks

« Even though we are the implementer, we may need the client to help us
- previously, we have seen clients provide data that we can process
- now, we will see how clients can provide code that can be executed

Callback pattern: “Code” provided by client to be used by library
* InJS etc., pass a function as an argument
 InJava, pass an object with the “code” in a method

Synchronous callbacks:
« Useful when library needs the callback result immediately

Asynchronous callbacks (i.e. event-driven programming):
« Useful for performing an action when some interesting event occurs later

CSE 331 Summer 2022

A sorting example...

First, we can define:

public interface Comparable<T> ({
public int compareTo (T other);

Every object that implements this interface must provide some code that informs us
which of two objects is bigger.

- returns -1 if this is smaller than other
- returns O if this is equal to other
- returns 1 if this is bigger than other

CSE 331 Summer 2022

A sorting example...

public static <T extends Comparable<T>> wvoid sort (List<T> 1lst) {
for (int 1 = 0; 1 '= n; i++) {
for (int Jj =0; jJ '=n - 1; j++) {
if (1st.get(j) .compareTo(lst.get(j + 1)) > 0) {
swap (1st, j, jJ + 1);

Relying on client
code to sort

We can use the callback pattern to ask the client how to compare to objects.

CSE 331 Summer 2022

How are callbacks used in practice?

 (lients sit around waiting for events like:

mouse move/drag/click, button press, button release

keyboard: key press or release, sometimes with modifiers like
shift/control/alt/etc.

finger tap or drag on a touchscreen

window resize/minimize/restore/close

timer interrupt (including animations)

network activity or file I/0O (start, done, error)
* (we will see an example of this shortly)

CSE 331 Summer 2022

Achievement unlocked: Observers

This is the observer pattern

- Objects can be observed via observers/listeners that are notified via callbacks
when an event (of interest) occurs

- Pattern: Something used over-and-over in software, worth recognizing when
appropriate and using common terms

- Widely used in public libraries
- Useful for “visual” programs like web applications

More examples of “observers” coming later...

CSE 331 Summer 2022

Event-driven programming

An event-driven program is designed to wait for events:
- program initializes then enters the event loop
- abstractly:
do {
e = getNextEvent() ;
process event e;

} while (e != quit);

Contrast with most programs we have written so far
- they perform specified steps in order and then exit
- that style is still used, just not as frequently
« example: computing Page Rank or other Big Data work

CSE 331 Summer 2022

Event-driven programming

Register Event
public void myFunction () {
System.out.println(“I was here”);

} Empty

buttonl.addonClickListener (myFunction) ; Message
Queue

Event loop:

do {

e = getNextEvent() ;

process event e;

} while (e !'= quit);

CSE 331 Summer 2022

Event-driven programming

Register Event
public void myFunction () {
System.out.println(“I was here”);

}

buttonl.addOnClickListener (myFunction) ;

Event loop:

do {
e = getNextEvent() ;
process event e;

} while (e !'= quit);

CSE 331 Summer 2022

button
onHover

button
onClick

button1
onRelease

Event-driven programming

Register Event

public void myFunction () { button
System.out.println(“*I was here”) ; onClick
}
buttonl.addOnClickListener (myFunction) ; button
onRelease
Event loop:
do {
e = getNextEvent() ;
process event e;
} while (e !'= quit);

CSE 331 Summer 2022

Event-driven programming

Register Event

public void myFunction() {
button

System.out.println(“I was here”); onRelease

}
buttonl.addOnClickListener (myFunction) ;

Event loop:
do {
e = getNextEvent() ;

process event e;

} while (e !'= quit);

CSE 331 Summer 2022

Event-driven programming

Register Event
public void myFunction () {
System.out.println(“I was here”);

} Empty

buttonl.addonClickListener (myFunction) ; Message
Queue

Event loop:

do {

e = getNextEvent() ;

process event e;

} while (e !'= quit);

CSE 331 Summer 2022

Looking Ahead

« We're going to build an application that can find walking paths on the campus
« We'd like to add a graphical user interface front-end once that's done
- The web is a common way to build/distribute apps

- Web programming uses the same concepts we're learning

* Note: There are many ways to approach web programming. We're doing just one...

CSE 331 Summer 2022

Looking Ahead

« We're going to need to learn a few different pieces:
- HTML
» The language that web browsers render
« Describes the structure and content of the page
- TypeScript (TS)
« Aversion of JavaScript that adds type-safety
« Used to create the bulk of our application
+ Adds interactivity to the webpage
- React

* AUl library - handles the interactions between TS and HTML, makes Ul
programming easier

CSE 331 Summer 2022

Looking Ahead

« We're going to learn just enough to display a map, allow users to select endpoints,
and draw a path

- Focus on the basics, i.e. key differences between what we're doing and Java
— Our goal isn't to cover everything — don't have time, so core ideas only!

« Will probably be outside your comfort zone - this is new stuff!
- Remember to ask questions ©

» Last two assignments this quarter:

- HWS8 will draw lines on a map image (using TS/React)
- HWO9 connects the HW8 Ul to the implementation of Dijkstra’'s from HW7

CSE 331 Summer 2022

Credits

« (CSE 331 JS/TS project originally due to Andrew Gies and Avi Bhagat, new version
in 22wi done by Bryan Lim and Ardi Madadi (& a host of others testing, etc.)

« Slides due to Andrew Gies, Hal Perkins, and Kevin Zatloukal

« Thanks to Lauren Bricker and CSE 154 crew for some additional notes (but even if
you took 154 recently this stuff probably will look different)

« And from wherever we can find useful things...

CSE 331 Summer 2022

A little history

In the beginning, there was the web page

It was displayed in a browser
It had links
But it was static

There was no way to update or compute
content dynamically or interact with users

Solution: add a scripting language to the

browser

- Users (page developers) should be able

to write code

- Code should be able to interact with the

browser’s data structures to read /
update / modify the page contents

World Wide Web

The WorldWideWeb (W3) is a wide-area
information retrieval initiative aiming to give universal
access to a large universe of documents.

Everything there is online about W3 is linked directly or
indirectly to this document, including an

of the project, , November's

Pointers to the world's online
information, , etc.

on the browser you are using

A list of W3 project components and
their current state. (e.g. X11

)

Details of protocols, formats, program internals
etc

Paper documentation on W3 and references.
A list of some people involved in the project.
A summary of the history of the project.
? If you would like to support the web..
Getting the code by , etc.

CSE 331 Summer 2022

http://info.cern.ch/hypertext/WWW/WhatIs.html
http://info.cern.ch/hypertext/WWW/Summary.html
http://info.cern.ch/hypertext/WWW/Administration/Mailing/Overview.html
http://info.cern.ch/hypertext/WWW/Policy.html
http://info.cern.ch/hypertext/WWW/News/9211.html
http://info.cern.ch/hypertext/WWW/FAQ/List.html
http://info.cern.ch/hypertext/DataSources/Top.html
http://info.cern.ch/hypertext/DataSources/bySubject/Overview.html
http://info.cern.ch/hypertext/DataSources/WWW/Servers.html
http://info.cern.ch/hypertext/WWW/Help.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/LineMode/Browser.html
http://info.cern.ch/hypertext/WWW/Status.html#35
http://info.cern.ch/hypertext/WWW/NeXT/WorldWideWeb.html
http://info.cern.ch/hypertext/WWW/Daemon/Overview.html
http://info.cern.ch/hypertext/WWW/Tools/Overview.html
http://info.cern.ch/hypertext/WWW/MailRobot/Overview.html
http://info.cern.ch/hypertext/WWW/Status.html#57
http://info.cern.ch/hypertext/WWW/Technical.html
http://info.cern.ch/hypertext/WWW/Bibliography.html
http://info.cern.ch/hypertext/WWW/People.html
http://info.cern.ch/hypertext/WWW/History.html
http://info.cern.ch/hypertext/WWW/Helping.html
http://info.cern.ch/hypertext/README.html
http://info.cern.ch/hypertext/WWW/LineMode/Defaults/Distribution.html

Enter JavaScript

« Created in 1995 by Brenden Eich as a “scripting language” for Mozilla's browser
- Done in 10 days!

« Used to make web pages interactive:
- Change the content/structure in HTML
- React to events (page load, user clicks)
- Discover info about local computer
- Do local calculations

* No relation to Java other than trying to piggyback on all the Java hype at that time

CSE 331 Summer 2022

Why JavaScript now?

 JavaScriptis a web standard & ships in every browser
- But not supported identically by all of them ®

« De facto execution engine for dynamic code on web
- If a website is doing something interesting, there's probably JavaScript inside

« We will try to stick to portable, generic stuff

- Use tooling that "smooths out" the difference between browsers as much as
possible (it's the wild west out there)

- But for HW8/HW9 we're only supporting Chrome (at least this time around) to
avoid cross-platform issues

CSE 331 Summer 2022

In Context...

The "Original" Model of (Dynamic) Web Development

(small amount) Interactivity/Animation/Changes

e

Modifies

(lots of this) Document Structure & Content

CSE 331 Summer 2022

So that's what we're doing, right?

* The original model was meant for simple things
— click a button to submit a form, change a color, etc..

« The modern web now hosts full-fledged applications entirely using web technology
- JS + HTML were never designed for this

* The "old" way:
- Language + tooling doesn't help much, difficult to write big programs
correctly/safely/efficiently

- Managing large parts of the webpage with pure JS is difficult to get right

CSE 331 Summer 2022

* There are a lot of ways to do
things in modern web dev

One* Modern Alternative

« TS =]S with extra features
« Type System (!)
React « The compiler is smart - helps you
find bugs, just like Java

e React = Ul Library

Compiled Into » Main idea: users create the content
with JS/TS

« Uses data to create the web content
- change data to change the content

TypeScript

(lots of this)

Modifies + Creates Content

Browsers don't speak TS

We only write TS, but you should know
that this is what's happening

(very little)

CSE 331 Summer 2022

Resources

« Lectures will (try to) point out key things
« TypeScriptis mostly JavaScript - only big difference is types
- Wondering how to do something? Look for JavaScript answers
- Wondering how to type something? Look for TypeScript answers
* For more...
- Mozilla (MDN) tutorials are good
- CodeAcademy JavaScript basics
- React documentation - small doses, way more info than we need
- TypeScript documentation - focused on the "new stuff" in TS vs JS
- Be very careful about web searches
- There are 1000 ways to do anything, many are different than what we're doing...
- Code snippets from the web may lead you way off.

- When in doubt, make an Ed post!
CSE 331 Summer 2022

Our plan...

First, look at basic HTML on its own
- No scripting, no dynamic content
- Just how content/structure is communicated to the browser

Second, look at basic TypeScript (& JavaScript) on its own
- No browser, no HTML, just the language
- Get a feel for what's different from Java

Third, a quick look at very basic user interactions
- Events, event listeners, and callbacks (just basic ideas now)

Fourth, use TypeScript with React with HTML
- Write TypeScript code, using the React library
- Generates the page content using HTML-like syntax

CSE 331 Summer 2022

HTML, Formally

* HTML - HyperText Markup Language

Consists of tags and their contents

- Each tag has a different meaning
- button, paragraph, link, etc...

- Each one has a beginning and end.

- Can contain text (content) and other tags. Optional attributes

(organized as key-value pairs)
« Can think of them like “constructor parameters”: pieces of data
that specify extra info about the tag.

+ Define document structure and content

CSE 331 Summer 2022

Demo

<html lang="en">
<head>
<title>331 Example Webpage</title>
</head>
<body>
<hl1>The Allen School</hl>
<div>
<p>
The Allen School i1s a Computer

N N 331 Example Webpage X +

C @ File | /Usersfandrew/1-basic-html.html

The Allen School

The Allen School is a Computer Science school at UW. The best course in
the Allen School is CSE 331.

Science school at

UW. The best course in
 the Allen School is
CSE 331.

</p>
<button>Click Me!</button>
</div>
</body>
</html>

CSE 331 Summer 2022

Anatomy of a Tag

Element

A
- N\

<p> Some Text </p>

Tag Name ‘ \
Content

Closing Tag

CSE 331 Summer 2022

Anatomy of a Tag

Element

A
- N\

<p id="firstParagraph”> Some Text </p>

Tag Name \ Attribute Content \

Attribute Value Closing Tag
Name

Self-Closing Tag (No Content)

CSE 331 Summer 2022

Tags form a Tree

<div>
<p id="firstParagraph”> Some Text </p>

<div>
<p>Hello</p>
</div>
</div>

br div
This tree data structure, _ - -
which lives in the browser, l

is often called the "DOM" -
Document Object Model

CSE 331 Summer 2022

A Few Useful Tags

* A few worth mentioning here;

<html> and <head> and <body> - Used to organize a basic HTML
document.

<title> - Sets the title of the webpage

<p> - Paragraph tag, surrounds text with whitespace/line breaks.
<a> - Link tag - links to another webpage.

<div>-"“The curly braces of HTML" - used for grouping other tags.
Surrounds its content with whitespace/line breaks.

 - Like <div>, but no whitespace/line breaks.

 -Forces a new line (like “\n"”). Has no content.

<button> - Create a clickable button on the screen

» See the W3Schools HTML reference for a complete list, along with all
their supported attributes.

CSE 331 Summer 2022

Demo

<html lang="en">
<head>
<title>331 Example Webpage</title>
</head>
<body>
<hl1>The Allen School</hl>
<div>
<p>
The Allen School i1s a Computer

N N 331 Example Webpage X +

C @ File | /Usersfandrew/1-basic-html.html

The Allen School

The Allen School is a Computer Science school at UW. The best course in
the Allen School is CSE 331.

Science school at

UW. The best course in
 the Allen School is
CSE 331.

</p>
<button>Click Me!</button>
</div>
</body>
</html>

CSE 331 Summer 2022

What's next?

First, look at basic HTML on its own
- No scripting, no dynamic content
- Just how content/structure is communicated to the browser

Second, look at basic TypeScript (& JavaScript) on its own
— No browser, no HTML, just the language
- Get a feel for what's different from Java

Third, a quick look at very basic user interactions
- Events, event listeners, and callbacks (more depth later)

Fourth, use TypeScript with React with HTML
- Write TypeScript code, using the React library
- Generates the page content using HTML-like syntax

CSE 331 Summer 2022

JavaScript (1)

Like Java in many ways:

* Variables:
— let allows rebinding
— const is like Java's final - can't change after creation

let something = "hello, world";
const pi = 3.1415;

* Types of values:
— number - floating point only, no integer type
— boolean - true/false
— string - similar to Java's strings
— undefined - "unset" values
— object (includes null) - more info later

CSE 331 Summer 2022

JavaScript (2)

e if/else statements
— Structurally identical to Java
— Any value can be used as a boolean:
e false, 0, ™", null, undefined, NaN behave as false
* Everything else (!) behaves as true
* Values are described as "falsey" and "truthy"

* Loops
— for & while - same as Java
— for-in and for-of are like Java's for-each
* Be careful with for-in and for-of, they're tricky

* Arrays
- Can mix typesinthe array - [123, "hello", false]
— No bounds checks, possible to access after the end
- Versatile: behave as stacks/queues/lists

CSE 331 Summer 2022

JavaScript (3)

° Functions let mul = function(x, y) {
— Can exist outside of classes/objects } return x * y;
- Functions are values
* Putthem in variables let add = function(x, vy) {
* Pass them to functions return x + y;
}
* Objects ‘ add(2, 3); // result is 5
- Key/\./al.ue pairs add = mul;
* Similar to a Java HashMap add(2, 3); // result is 6

— The values can be functions
* This is how we get methods!

- Written using { and } let simpleObij = ({
* Recent JS/ECMAScript adds x: 8,
“class” syntax so it looks more y: "abc",
familiar z: true

I
simpleObj.x; // result is 8

CSE 331 Summer 2022

Why TypeScript?

* JSvariables are dynamically typed
- The type of a variable can change based on its value
- JS will attempt to convert values where it can
— This leads to tricky bugs

let x = 5; // x holds a number
x = "35"; // x now holds a string
x += 7; // x = "357"

* TS = Mostly JS, but adds static types (like Java)
— Can declare type when creating a variable
- TypeScript compiler will enforce this - prevents bugs!

let x: number = 5;
x = "35"; // TypeScript error!

CSE 331 Summer 2022

More TypeScript

« Longer online video tutorial

- Please watch before next Monday (otherwise that class won't make much
sense)

« Some basic sample files in the TypeScript/ folder accompanying these slides (see
calendar for link)

CSE 331 Summer 2022

What's next?

First, look at basic HTML on its own
- No scripting, no dynamic content
- Just how content/structure is communicated to the browser

Second, look at basic TypeScript (& JavaScript) on its own
- No browser, no HTML, just the language
- Get a feel for what's different from Java

Third, a quick look at very basic user interactions
- Events, event listeners, and callbacks (more depth later)

Fourth, use TypeScript with React with HTML
- Write TypeScript code, using the React library
- Generates the page content using HTML-like syntax

CSE 331 Summer 2022

Demo Revisited

331 Example Webpage b4 +

= C @ File | /Usersfandrew/1-basic-html.html

The Allen School

The Allen School is a Computer Science school at UW. The best course in

« Our first webpage was static

- It even included a picture of a button,
but nothing happened when it was
ClleEd <html lang="en">

<head>
. . <title>331 Example Webpage</title>
« How do we add interaction? N
<body>
<h1>The Allen School</hl>
<div>
<p>
The Allen School is a Computer Science school at
UW. The best course in
 the Allen School is
CSE 331.
</p>
<button>Click Me!</button>
</div>
</body>
</html>

Demo

CSE 331 Summer 2022

o0 @ HTML Button x4+

Del I lO 2 « = C @ O file:///Users/perkins/Desktop, 17 & » =

| Click Me! |

<html lang="en">

<head>
<title>HTML Button</title>
</head> o0 ® HTML Button ® | +
“« - C @ [file:///Users/perkins/Desktop, 17 & » =
<body>
<script type="text/javascript"> @ e

{ Hello, CSE 331!

function sayHello ()
alert ("Hello, CSE 331!");

}
</script>
<button onclick="sayHello()">Click Me!</button>

</body>
</html>
CSE 331 Summer 2022

What happened here?

« This is the callback pattern

« The webpage is loaded into the web browser and it contains a JavaScript function
and a button

« When the button is created, the JS function to be called on a button click is
registered with the button

- The function is not called at this time
« When the user clicks the button, it causes a user-interface event to happen

- In response, the button calls the function that was registered to be called
(notified) whenever there is a click event

* This is a callback

CSE 331 Summer 2022

[N HTML Button X |+

C @) file:///Users/perkins/Desktop, 17 b » =

D emo 2 re 0 - web page is loaded Gk v

into browser

<html lang="en">

<head> 3 - when button is clicked

. function sayHello() is called
<title>HTML Butf and alert box is displayed

</head>
<body>

0@ HTML Button x | +

C @) file:f//Users/perkins/Desktop, 17 & » =

@ fite:)/

Hello, CSE 331!

<script type="text/javascript">
function sayHello () {
alert ("Hello, CSE 33T J

1 - JS sayHello function embedded
} in web page inside <script> tag

</script>

<button onclick="sayHello()">Click Me!</button>

</body> —/ 2 - Button created on page load;
sayHello() function registered to
</html> be called on click event

CSE 331 Summer 2022

Demo 2 - Takeaway

» This demo gives a very simple example using plain JavaScript - details will be
different in React, but the core callback idea will be the same

- On startup, register code to be activated when events happen

« Multiple ways to do this: options in an html tag (basic JS), call a “register”
function and pass to it the function to call when the event happens (react),
similar things in other async systems

- When an event happens (button press, text added to dialog, timer expires, data
read, etc. etc.) the code that is registered ahead of time will be called

CSE 331 Summer 2022

Before next class...

1. Watch the TS Introduction video posted on Panopto before next lecture

2. Starton the Prep. Quiz: HW7 to get practice with generics
- Will need to apply generics and implement Dijkstra’s algorithm

3. If you are uncomfortable with generics, start HW7 early

- Will need to apply generics
- Useful for implementing Dijkstra’s algorithm on a Graph<Double>

CSE 331 Summer 2022

