CSE 331

Software Design & Implementation
Topic: HTML and TypeScript

(=) Discussion: What can you do to make a team work smoothly?
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Reminders

* |I'm out this weekend - make sure to email course staff
« Watch TS Introduction video

Upcoming Deadlines

* Prep. Quiz: HW7 due Monday (8/01)
« HW7 due Thursday (8/04)
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Last Time...

Today's Agenda

Generic Methods
Generics and Subtyping
Arrays

Type Bounds

Wildcards

Type Erasure

Callbacks

« Event-driven Programming
« A Short History of Web

« HTML

« TypeScript
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A sorting example...

Consider the following sorting method:

public static void sort(List<Integer> 1lst) {
for (int 1 = 0; 1 '= n; i++) {
for (int § = 0; j '= n - 1; j++) {
if (1lst.get(j) > 1lst.get(j + 1)) {
swap (1st, j, jJ + 1);

What could we improve about this?
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A sorting example...

Consider the following sorting method:

public static void sort(List<?> 1lst) {
for (int 1 = 0; 1 '= n; i++) {
for (int J =0; jJ '=n - 1; j++) {
if (1lst.get(j) > 1lst.get(j + 1)) {
swap (1st, j, jJ + 1);

But wait - this doesn’t compile! Why?
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Achievement unlocked: Callbacks

« Even though we are the implementer, we may need the client to help us
- previously, we have seen clients provide data that we can process
- now, we will see how clients can provide code that can be executed

Callback pattern: “Code” provided by client to be used by library
* InJS etc., pass a function as an argument
 InJava, pass an object with the “code” in a method

Synchronous callbacks:
« Useful when library needs the callback result immediately

Asynchronous callbacks (i.e. event-driven programming):
« Useful for performing an action when some interesting event occurs later
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A sorting example...

First, we can define:

public interface Comparable<T> ({
public int compareTo (T other);

Every object that implements this interface must provide some code that informs us
which of two objects is bigger.

- returns -1 if this is smaller than other
- returns O if this is equal to other
- returns 1 if this is bigger than other
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A sorting example...

public static <T extends Comparable<T>> wvoid sort (List<T> 1lst) {
for (int 1 = 0; 1 '= n; i++) {
for (int Jj =0; jJ '=n - 1; j++) {
if (1st.get(j) .compareTo(lst.get(j + 1)) > 0) {
swap (1st, j, jJ + 1);

Relying on client
code to sort

We can use the callback pattern to ask the client how to compare to objects.
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How are callbacks used in practice?

 (lients sit around waiting for events like:

mouse move/drag/click, button press, button release

keyboard: key press or release, sometimes with modifiers like
shift/control/alt/etc.

finger tap or drag on a touchscreen

window resize/minimize/restore/close

timer interrupt (including animations)

network activity or file I/0O (start, done, error)
* (we will see an example of this shortly)
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Achievement unlocked: Observers

This is the observer pattern

- Objects can be observed via observers/listeners that are notified via callbacks
when an event (of interest) occurs

- Pattern: Something used over-and-over in software, worth recognizing when
appropriate and using common terms

- Widely used in public libraries
- Useful for “visual” programs like web applications

More examples of “observers” coming later...
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Event-driven programming

An event-driven program is designed to wait for events:
- program initializes then enters the event loop
- abstractly:
do {
e = getNextEvent() ;
process event e;

} while (e != quit);

Contrast with most programs we have written so far
- they perform specified steps in order and then exit
- that style is still used, just not as frequently
« example: computing Page Rank or other Big Data work
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Event-driven programming

Register Event
public void myFunction () {
System.out.println(“I was here”);

} Empty

buttonl.addonClickListener (myFunction) ; Message
Queue

Event loop:

do {

e = getNextEvent() ;

process event e;

} while (e !'= quit);
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Event-driven programming

Register Event
public void myFunction () {
System.out.println(“I was here”);

}

buttonl.addOnClickListener (myFunction) ;

Event loop:

do {
e = getNextEvent() ;
process event e;

} while (e !'= quit);
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Event-driven programming

Register Event

public void myFunction () { button
System.out.println(“*I was here”) ; onClick
}
buttonl.addOnClickListener (myFunction) ; button
onRelease
Event loop:
do {
e = getNextEvent() ;
process event e;
} while (e !'= quit);
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Event-driven programming

Register Event

public void myFunction() {
button

System.out.println(“I was here”); onRelease

}
buttonl.addOnClickListener (myFunction) ;

Event loop:
do {
e = getNextEvent() ;

process event e;

} while (e !'= quit);

CSE 331 Summer 2022




Event-driven programming

Register Event
public void myFunction () {
System.out.println(“I was here”);

} Empty

buttonl.addonClickListener (myFunction) ; Message
Queue

Event loop:

do {

e = getNextEvent() ;

process event e;

} while (e !'= quit);
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Looking Ahead

«  We're going to build an application that can find walking paths on the campus
« We'd like to add a graphical user interface front-end once that's done
- The web is a common way to build/distribute apps

- Web programming uses the same concepts we're learning

* Note: There are many ways to approach web programming. We're doing just one...
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Looking Ahead

« We're going to need to learn a few different pieces:
- HTML
» The language that web browsers render
« Describes the structure and content of the page
- TypeScript (TS)
« Aversion of JavaScript that adds type-safety
« Used to create the bulk of our application
+ Adds interactivity to the webpage
- React

* AUl library - handles the interactions between TS and HTML, makes Ul
programming easier
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Looking Ahead

« We're going to learn just enough to display a map, allow users to select endpoints,
and draw a path

- Focus on the basics, i.e. key differences between what we're doing and Java
— Our goal isn't to cover everything — don't have time, so core ideas only!

«  Will probably be outside your comfort zone - this is new stuff!
- Remember to ask questions ©

» Last two assignments this quarter:

- HWS8 will draw lines on a map image (using TS/React)
- HWO9 connects the HW8 Ul to the implementation of Dijkstra’'s from HW7
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Credits

« (CSE 331 JS/TS project originally due to Andrew Gies and Avi Bhagat, new version
in 22wi done by Bryan Lim and Ardi Madadi (& a host of others testing, etc.)

« Slides due to Andrew Gies, Hal Perkins, and Kevin Zatloukal

« Thanks to Lauren Bricker and CSE 154 crew for some additional notes (but even if
you took 154 recently this stuff probably will look different)

« And from wherever we can find useful things...

CSE 331 Summer 2022



A little history

In the beginning, there was the web page

It was displayed in a browser
It had links
But it was static

There was no way to update or compute
content dynamically or interact with users

Solution: add a scripting language to the

browser

- Users (page developers) should be able

to write code

- Code should be able to interact with the

browser’s data structures to read /
update / modify the page contents

World Wide Web

The WorldWideWeb (W3) is a wide-area
information retrieval initiative aiming to give universal
access to a large universe of documents.

Everything there is online about W3 is linked directly or
indirectly to this document, including an

of the project, , November's

Pointers to the world's online
information, , etc.

on the browser you are using

A list of W3 project components and
their current state. (e.g. X11

)

Details of protocols, formats, program internals
etc

Paper documentation on W3 and references.
A list of some people involved in the project.
A summary of the history of the project.
? If you would like to support the web..
Getting the code by , etc.
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http://info.cern.ch/hypertext/WWW/WhatIs.html
http://info.cern.ch/hypertext/WWW/Summary.html
http://info.cern.ch/hypertext/WWW/Administration/Mailing/Overview.html
http://info.cern.ch/hypertext/WWW/Policy.html
http://info.cern.ch/hypertext/WWW/News/9211.html
http://info.cern.ch/hypertext/WWW/FAQ/List.html
http://info.cern.ch/hypertext/DataSources/Top.html
http://info.cern.ch/hypertext/DataSources/bySubject/Overview.html
http://info.cern.ch/hypertext/DataSources/WWW/Servers.html
http://info.cern.ch/hypertext/WWW/Help.html
http://info.cern.ch/hypertext/WWW/Status.html
http://info.cern.ch/hypertext/WWW/LineMode/Browser.html
http://info.cern.ch/hypertext/WWW/Status.html#35
http://info.cern.ch/hypertext/WWW/NeXT/WorldWideWeb.html
http://info.cern.ch/hypertext/WWW/Daemon/Overview.html
http://info.cern.ch/hypertext/WWW/Tools/Overview.html
http://info.cern.ch/hypertext/WWW/MailRobot/Overview.html
http://info.cern.ch/hypertext/WWW/Status.html#57
http://info.cern.ch/hypertext/WWW/Technical.html
http://info.cern.ch/hypertext/WWW/Bibliography.html
http://info.cern.ch/hypertext/WWW/People.html
http://info.cern.ch/hypertext/WWW/History.html
http://info.cern.ch/hypertext/WWW/Helping.html
http://info.cern.ch/hypertext/README.html
http://info.cern.ch/hypertext/WWW/LineMode/Defaults/Distribution.html

Enter JavaScript

« Created in 1995 by Brenden Eich as a “scripting language” for Mozilla's browser
- Done in 10 days!

« Used to make web pages interactive:
- Change the content/structure in HTML
- React to events (page load, user clicks)
- Discover info about local computer
- Do local calculations

* No relation to Java other than trying to piggyback on all the Java hype at that time
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Why JavaScript now?

 JavaScriptis a web standard & ships in every browser
- But not supported identically by all of them ®

« De facto execution engine for dynamic code on web
- If a website is doing something interesting, there's probably JavaScript inside

«  We will try to stick to portable, generic stuff

- Use tooling that "smooths out" the difference between browsers as much as
possible (it's the wild west out there)

- But for HW8/HW9 we're only supporting Chrome (at least this time around) to
avoid cross-platform issues
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In Context...

The "Original" Model of (Dynamic) Web Development

(small amount) Interactivity/Animation/Changes

e

Modifies

(lots of this) Document Structure & Content
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So that's what we're doing, right?

* The original model was meant for simple things
— click a button to submit a form, change a color, etc..

« The modern web now hosts full-fledged applications entirely using web technology
- JS + HTML were never designed for this

* The "old" way:
- Language + tooling doesn't help much, difficult to write big programs
correctly/safely/efficiently

- Managing large parts of the webpage with pure JS is difficult to get right
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* There are a lot of ways to do
things in modern web dev

One* Modern Alternative

« TS =]S with extra features
« Type System (!)
React « The compiler is smart - helps you
find bugs, just like Java

e React = Ul Library

Compiled Into » Main idea: users create the content
with JS/TS

« Uses data to create the web content
- change data to change the content

TypeScript

(lots of this)

Modifies + Creates Content

Browsers don't speak TS

We only write TS, but you should know
that this is what's happening

(very little)
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Resources

« Lectures will (try to) point out key things
« TypeScriptis mostly JavaScript - only big difference is types
- Wondering how to do something? Look for JavaScript answers
- Wondering how to type something? Look for TypeScript answers
* For more...
- Mozilla (MDN) tutorials are good
- CodeAcademy JavaScript basics
- React documentation - small doses, way more info than we need
- TypeScript documentation - focused on the "new stuff" in TS vs JS
- Be very careful about web searches
- There are 1000 ways to do anything, many are different than what we're doing...
- Code snippets from the web may lead you way off.

- When in doubt, make an Ed post!
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Our plan...

First, look at basic HTML on its own
- No scripting, no dynamic content
- Just how content/structure is communicated to the browser

Second, look at basic TypeScript (& JavaScript) on its own
- No browser, no HTML, just the language
- Get a feel for what's different from Java

Third, a quick look at very basic user interactions
- Events, event listeners, and callbacks (just basic ideas now)

Fourth, use TypeScript with React with HTML
- Write TypeScript code, using the React library
- Generates the page content using HTML-like syntax
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HTML, Formally

* HTML - HyperText Markup Language

Consists of tags and their contents

- Each tag has a different meaning
- button, paragraph, link, etc...

- Each one has a beginning and end.

- Can contain text (content) and other tags. Optional attributes

(organized as key-value pairs)
« Can think of them like “constructor parameters”: pieces of data
that specify extra info about the tag.

+ Define document structure and content
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Demo

<html lang="en">
<head>
<title>331 Example Webpage</title>
</head>
<body>
<hl1>The Allen School</hl>
<div>
<p>
The Allen School i1s a Computer

N N 331 Example Webpage X +

C @ File | /Usersfandrew/1-basic-html.html

The Allen School

The Allen School is a Computer Science school at UW. The best course in
the Allen School is CSE 331.

Science school at

UW. The best course in <br/> the Allen School is
<a href="https://cs.uw.edu/331">CSE 331</a>.

</p>
<button>Click Me!</button>
</div>
</body>
</html>
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Anatomy of a Tag

Element

A
- N\

<p> Some Text </p>

Tag Name ‘ \
Content

Closing Tag
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Anatomy of a Tag

Element

A
- N\

<p id="firstParagraph”> Some Text </p>

Tag Name \ Attribute Content \

Attribute Value Closing Tag
Name

Self-Closing Tag (No Content)

<br />
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Tags form a Tree

<div>
<p id="firstParagraph”> Some Text </p>
<br />
<div>
<p>Hello</p>
</div>
</div>

br div
This tree data structure, _ - -
which lives in the browser, l

is often called the "DOM" -
Document Object Model
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A Few Useful Tags

* A few worth mentioning here;

<html> and <head> and <body> - Used to organize a basic HTML
document.

<title> - Sets the title of the webpage

<p> - Paragraph tag, surrounds text with whitespace/line breaks.
<a> - Link tag - links to another webpage.

<div>-"“The curly braces of HTML" - used for grouping other tags.
Surrounds its content with whitespace/line breaks.

<span> - Like <div>, but no whitespace/line breaks.

<br /> -Forces a new line (like “\n"”). Has no content.

<button> - Create a clickable button on the screen

» See the W3Schools HTML reference for a complete list, along with all
their supported attributes.
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Demo

<html lang="en">
<head>
<title>331 Example Webpage</title>
</head>
<body>
<hl1>The Allen School</hl>
<div>
<p>
The Allen School i1s a Computer

N N 331 Example Webpage X +

C @ File | /Usersfandrew/1-basic-html.html

The Allen School

The Allen School is a Computer Science school at UW. The best course in
the Allen School is CSE 331.

Science school at

UW. The best course in <br/> the Allen School is
<a href="https://cs.uw.edu/331">CSE 331</a>.

</p>
<button>Click Me!</button>
</div>
</body>
</html>
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What's next?

First, look at basic HTML on its own
- No scripting, no dynamic content
- Just how content/structure is communicated to the browser

Second, look at basic TypeScript (& JavaScript) on its own
— No browser, no HTML, just the language
- Get a feel for what's different from Java

Third, a quick look at very basic user interactions
- Events, event listeners, and callbacks (more depth later)

Fourth, use TypeScript with React with HTML
- Write TypeScript code, using the React library
- Generates the page content using HTML-like syntax
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JavaScript (1)

Like Java in many ways:

* Variables:
— let allows rebinding
— const is like Java's final - can't change after creation

let something = "hello, world";
const pi = 3.1415;

* Types of values:
— number - floating point only, no integer type
— boolean - true/false
— string - similar to Java's strings
— undefined - "unset" values
— object (includes null) - more info later
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JavaScript (2)

e if/else statements
— Structurally identical to Java
— Any value can be used as a boolean:
e false, 0, ™", null, undefined, NaN behave as false
* Everything else (!) behaves as true
* Values are described as "falsey" and "truthy"

* Loops
— for & while - same as Java
— for-in and for-of are like Java's for-each
* Be careful with for-in and for-of, they're tricky

* Arrays
- Can mix typesinthe array - [123, "hello", false]
— No bounds checks, possible to access after the end
- Versatile: behave as stacks/queues/lists
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JavaScript (3)

° Functions let mul = function(x, y) {
— Can exist outside of classes/objects } return x * y;
- Functions are values
* Putthem in variables let add = function(x, vy) {
* Pass them to functions return x + y;
}
* Objects ‘ add(2, 3); // result is 5
- Key/\./al.ue pairs add = mul;
* Similar to a Java HashMap add(2, 3); // result is 6

— The values can be functions
* This is how we get methods!

- Written using { and } let simpleObij = ({
* Recent JS/ECMAScript adds x: 8,
“class” syntax so it looks more y: "abc",
familiar z: true

I
simpleObj.x; // result is 8
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Why TypeScript?

* JSvariables are dynamically typed
- The type of a variable can change based on its value
- JS will attempt to convert values where it can
— This leads to tricky bugs

let x = 5; // x holds a number
x = "35"; // x now holds a string
x += 7; // x = "357"

* TS = Mostly JS, but adds static types (like Java)
— Can declare type when creating a variable
- TypeScript compiler will enforce this - prevents bugs!

let x: number = 5;
x = "35"; // TypeScript error!
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More TypeScript

« Longer online video tutorial

- Please watch before next Monday (otherwise that class won't make much
sense)

« Some basic sample files in the TypeScript/ folder accompanying these slides (see
calendar for link)
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What's next?

First, look at basic HTML on its own
- No scripting, no dynamic content
- Just how content/structure is communicated to the browser

Second, look at basic TypeScript (& JavaScript) on its own
- No browser, no HTML, just the language
- Get a feel for what's different from Java

Third, a quick look at very basic user interactions
- Events, event listeners, and callbacks (more depth later)

Fourth, use TypeScript with React with HTML
- Write TypeScript code, using the React library
- Generates the page content using HTML-like syntax
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Demo Revisited

331 Example Webpage b4 +

= C @ File | /Usersfandrew/1-basic-html.html

The Allen School

The Allen School is a Computer Science school at UW. The best course in

« Our first webpage was static

- It even included a picture of a button,
but nothing happened when it was
ClleEd <html lang="en">

<head>
. . <title>331 Example Webpage</title>
« How do we add interaction? N
<body>
<h1>The Allen School</hl>
<div>
<p>
The Allen School is a Computer Science school at
UW. The best course in <br/> the Allen School is
<a href="https://cs.uw.edu/331">CSE 331</a>.
</p>
<button>Click Me!</button>
</div>
</body>
</html>

Demo
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o0 @ HTML Button x4+

Del I lO 2 « = C @ O file:///Users/perkins/Desktop, 17 & » =

| Click Me! |

<html lang="en">

<head>
<title>HTML Button</title>
</head> o0 ® HTML Button ® | +
“« - C @ [ file:///Users/perkins/Desktop, 17 & » =
<body>
<script type="text/javascript"> @ e

{ Hello, CSE 331!

function sayHello ()
alert ("Hello, CSE 331!");

}
</script>
<button onclick="sayHello()">Click Me!</button>

</body>
</html>
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What happened here?

« This is the callback pattern

« The webpage is loaded into the web browser and it contains a JavaScript function
and a button

« When the button is created, the JS function to be called on a button click is
registered with the button

- The function is not called at this time
« When the user clicks the button, it causes a user-interface event to happen

- In response, the button calls the function that was registered to be called
(notified) whenever there is a click event

* This is a callback
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[ N HTML Button X |+

C @ ) file:///Users/perkins/Desktop, 17 b » =

D emo 2 re 0 - web page is loaded Gk v

into browser

<html lang="en">

<head> 3 - when button is clicked

. function sayHello() is called
<title>HTML Butf and alert box is displayed

</head>
<body>

0@ HTML Button x | +

C @ ) file:f//Users/perkins/Desktop, 17 & » =

@ fite:)/

Hello, CSE 331!

<script type="text/javascript">
function sayHello () {
alert ("Hello, CSE 33T J

1 - JS sayHello function embedded
} in web page inside <script> tag

</script>

<button onclick="sayHello()">Click Me!</button>

</body> —/ 2 - Button created on page load;
sayHello() function registered to
</html> be called on click event
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Demo 2 - Takeaway

» This demo gives a very simple example using plain JavaScript - details will be
different in React, but the core callback idea will be the same

- On startup, register code to be activated when events happen

« Multiple ways to do this: options in an html tag (basic JS), call a “register”
function and pass to it the function to call when the event happens (react),
similar things in other async systems

- When an event happens (button press, text added to dialog, timer expires, data
read, etc. etc.) the code that is registered ahead of time will be called
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Before next class...

1. Watch the TS Introduction video posted on Panopto before next lecture

2. Starton the Prep. Quiz: HW7 to get practice with generics
- Will need to apply generics and implement Dijkstra’s algorithm

3. If you are uncomfortable with generics, start HW7 early

- Will need to apply generics
- Useful for implementing Dijkstra’s algorithm on a Graph<Double>
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