
CSE 331

Software Design & Implementation

Spring 2022

Section 4 – Rep Exposure, JUnit, and HW4

UW CSE 331 Spring 2022 1

Administrivia

• Done with HW3!

• HW3 due yesterday!

• HW4 due next Wednesday (at 11PM)!

• Any questions?

UW CSE 331 Spring 2022 2

Agenda

• Rep Exposure Exercise

• How to write JUnit Tests

• FiniteSet and SimpleSet

UW CSE 331 Spring 2022 3

Rep Exposure Exercise

UW CSE 331 Spring 2022 4

ps

e1

e2

e3

main

…

x 1

y 2

elts

Rep Exposure Exercise (Solution)

UW CSE 331 Spring 2022 5

ps

e1

e2

e3

main

…

x 1

y 2

x 17

y 42

elts

…

Testing: A quick introduction

• In past assignments, you have run the test suite.

• But now you must start writing your own tests!

UW CSE 331 Spring 2022 6

JUnit

• Industry-standard Java toolkit for unit testing

– We’re using JUnit 4.12

– Check out the javadocs

• A unit test is a test for one “component” by itself

– “Component” typically a class or a method

• Each unit test written as a method

– We’ll see the particulars in a moment…

• Closely related unit tests should be grouped into a class

– For example, all unit tests for the same ADT implementation

UW CSE 331 Spring 2022 7

https://junit.org/junit4/javadoc/4.12/org/junit/package-summary.html

Writing tests with JUnit

A method annotated with @Test is flagged as a JUnit test

UW CSE 331 Spring 2022 8

import org.junit.*;

import static org.junit.Assert.*;

/** Unit tests for my Foo ADT implementation */

public class FooTests {

@Test

public void testBar() {

... /* use JUnit assertions in here */

}

}

Using JUnit assertions

• JUnit assertions establish success or failure of the test method

– Note: JUnit assertions are different from Java’s assert statement

• Use to check that an actual result matches the expected value

– Example: assertEquals(42, meaningOfLife());

– Example: assertTrue(list.isEmpty());

• A test method stops immediately after the first assertion failure

– If no assertion fails, then the test method passes

– Other test methods still run either way

• JUnit results show details of any test failures

UW CSE 331 Spring 2022 9

Common JUnit assertions

JUnit’s documentation has a full list, but these are the most common

assertions.

Any JUnit assertion can also take a string to show in case of failure, e.g.,
assertEquals(“helpful message”, expected, actual).

UW CSE 331 Spring 2022 10

Assertion Failure condition

assertTrue(test) test == false

assertFalse(test) test == true

assertEquals(expected, actual) expected and actual are not equal

assertSame(expected, actual) expected != actual

assertNotSame(expected, actual) expected == actual

assertNull(value) value != null

assertNotNull(value) value == null

https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html

Always* use >= 1 JUnit Assertion

• If you don’t use any JUnit assertions, you are only checking that

no exception/error occurs

• That’s a pretty weak notion of passing a test; rarely the best test

you could write

• Having more than one JUnit assertion in a test may make

sense, but one is the most common scenario

* Special case coming in a couple slides

UW CSE 331 Spring 2022 11

JUnit assertions vs Java’s assert

• Use JUnit assertions only in JUnit test code

– JUnit assertions have names like assertEquals,
assertNotNull, assertTrue

– Part of JUnit framework used to report test results

• Accessed via import org.junit….

– Don’t use in ordinary Java code (never import
org.junit.... in non-JUnit code)

• Use Java’s assert statement in ordinary Java code

– Use liberally to annotate/check “must be true” / “must not
happen” / etc. conditions

– Use in checkRep() to detect failure if problem(s) found

– Do not use in JUnit tests to check test result – does not
interact properly with JUnit framework to report results

UW CSE 331 Spring 2022 12

Checking for a thrown exception

• Should test that your code throws exceptions as specified

• This kind of test method fails if its body does not throw an

exception of the named class

– May not need any JUnit assertions inside the test method unlike

our previous guideline

• Do not use assertThrows() (that comes in JUnit 4.13, and we are

using JUnit 4.12)

UW CSE 331 Spring 2022 13

@Test(expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() {

List<String> list = new ArrayList<String>();

list.get(0);

}

Test ordering, setup, clean-up

JUnit does not promise to run tests in any particular order.

However, JUnit can run helper methods for common setup/cleanup

• Run before/after each test method in the class:

• Run once before/after running all test methods in the class:

UW CSE 331 Spring 2022 14

@BeforeClass

public static void m() { ... }

@AfterClass

public static void m() { ... }

@Before

public void m() { ... }

@After

public void m() { ... }

JUnit Tests Example

• Let’s look at some example JUnit tests…

UW CSE 331 Spring 2022 15

Tips for effective testing

• Use constants instead of hard-coded values

– Makes easier to change later on

• Take advantage of assertion messages

• Give a descriptive name to each unit test (method)

– Verbose but clear is better than short and inscrutable

– Don’t go overboard, though :-)

• Write tests with a simple structure

– Isolate bugs one at a time with successive assertions

– Helps avoid bugs in your tests too!

• Aim for thorough test coverage

– Big/small inputs, common/edge cases, exceptions, ...

UW CSE 331 Spring 2022 16

Test Design Worksheet

• Work in small groups

• Give logic of the tests, not actual code

• Only test the operations provided on the worksheet

• More details in lecture if additional information/review needed

UW CSE 331 Spring 2022 17

HW4 Background: Floats

• Floats vs. Doubles

– Both represent floating point numbers, but doubles are twice the
size (think int vs long)

– But we will be using floats

• Special cases:

– Float.POSITIVE_INFINITY and Float.NEGATIVE_INFINITY

– Float.NaN – means not a number

• Operations where either one of the operands is NaN

– All operations will return NaN

– e.g. NaN * 1.23456f = NaN

• Including ==

– Float.NaN == Float.NaN -> false

– Use Float.isNaN() or Float.isFinite() instead

UW CSE 331 Spring 2022 18

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Float.html

Finite Sets

• In HW4, we will be working in the FiniteSet class, which represents

a set of points along a number line, where each point is a float.

• Let’s say we choose to represent this as an array of floats, i.e.
float[]

• We need to make some choices:

– Should we allow duplicates? Why or why not?

– Should we sort our array? Why or why not?

• We will not allow duplicates and keep the array sorted.

• We will also store a Float.NEGATIVE_INFINITY as the first element

in the array and a Float.POSTIVE_INFINITY as the last element…

– This will make reasoning about it easier. For instance, we can
guarantee that there is an index i such that D[i] < x < D[i+1]

UW CSE 331 Spring 2022 19

FiniteSet Field

private final float[] vals;

The set { -5.3, 1.48, 7.1234, 463.8 } will be represented as:

[Float.NEGATIVE_INFINITY, -5.3, 1.48, 7.1234, 463.8, Float.POSITIVE_INFINITY]

What is our representation invariant and abstraction function?

// Points are stored in an array, in sorted order, with an

// extra -infinity at the front and +infinity at the end

// to simplify union etc.

//

// RI: -infinity = vals[0] < vals[1] < ... <

// vals[vals.length-1] = +infinity

// AF(this) = { vals[1], vals[2], ..., vals[vals.length-2] }

UW CSE 331 Spring 2022 20

FiniteSet Methods

Some common set operations:

• Finding the union (∪) of set A and set B. This is a new set of points that

are either in A, B, or both A and B:

– union([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])

= [-inf, 1, 4, 5, 6, 7, 11, inf] => { 1, 4, 5, 6, 7, 11 }

• Finding the intersection (∩) of set A and set B. This is a new set of points

that are in both A and B:

– intersection([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])

= [-inf, 1, 7, inf] => { 1, 7 }

• Finding the difference (\) of set A and set B. This is a new set of points

that are in A but not B:

– difference([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])

= [-inf, 4, 5, inf] => { 4, 5 }

UW CSE 331 Spring 2022 21

SimpleSet

For much of the assignment, you will be working in SimpleSet.java

• A SimpleSet is defined as either a finite set of points or the complement

of a finite set of points (meaning everything but).

– e.g. given the set of points { 1, 7, 9 }:

• we can have a simple set that contains 1, 7, and 9 or

• one that contains all real numbers except 1, 7, and 9

/**

* Represents an immutable set of points on the real line that is easy to

* describe, either because it is a finite set, e.g., {p1, p2, ..., pN},

* or because it excludes only a finite set, e.g., R \ {p1, p2, ..., pN}.

* As with FiniteSet, each point is represented by a Java float with a

* non-infinite, non-NaN value.

*/

public class SimpleSet {

UW CSE 331 Spring 2022 22

FiniteSet starter code

Let’s now skim the starter code…

UW CSE 331 Spring 2022 23

