
CSE 331
Software Design & Implementation

Autumn 2022
Section 8 – HW8 & React

UW CSE 331 Autumn 2022 1

Administrivia

• HW7 due tomorrow night!
– Make sure to tag right!

• HW8 due nearly two weeks from now (Wed. 11/30)
– No Gitlab pipeline, but you still need to tag!
– No re-runs (no staff tests). It’s your responsibility to check

that your submission runs without any compilation errors!

• No section next week – have a good break!

2UW CSE 331 Autumn 2022

Agenda

• Overview of HW8 – “Draw Lines”

• React examples

• Using Leaflet for Maps in React

UW CSE 331 Autumn 2022 3

UW CSE 331 Spring 2022 4

Node and NPM

• Used to manage our React development environment

• Install Node.js: https://nodejs.org/en/
– This will also install NPM

• Install the LTS version (not the current version)
– Windows Users: Make sure you “Add to PATH” (should be

automatically selected by default)
– MacOS Users: may get a warning about the installer not

coming from a “verified developer.”
To resolve this, open System Preferences and navigate to
Security & Privacy > General. There, you'll be able to click
“Open” to run the Node/NPM installer.

UW CSE 331 Autumn 2022 5

https://nodejs.org/en/

React (JavaScript library)

• React (also known as React.js or ReactJS) is an open-source
front-end JavaScript library

• React code is made of entities called components, which allow
you to implement different UI in different classes
– Think of a component like a synthetic HTML tag

• Allow direct addition of HTML to the code

• Check HTML syntax (refer to the lecture material for this)

UW CSE 331 Autumn 2022 6

React Components

• Each component has a render method to determine what it
looks like on the page

• Components form a tree:

• Components can have state, which is local information used for
rendering

• Components can receive information from its parent using
props
– Use functions as props as callbacks

UW CSE 331 Autumn 2022 7

<App />

<MyButton /> <MyPicture />

React Components

• MyComponentName is the name of your component/class

• In this case, the props are value and onChange

• onChange takes in a function, which we call a callback
– this is how we can pass information up the tree, from a child

to a parent

UW CSE 331 Autumn 2022 8

<MyComponentName value={"Hello World"}
onChange={() => doSomething()}/>

React Developer Tools

• You should download
the React Developer
Tools!

• This is a Chrome/Edge
extension that allows
you to view additional
details about your
React app

UW CSE 331 Autumn 2022 9

https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en

IntelliJ Ultimate Edition
Community
• No Javascript/Typescript

support

No documentation on hover!

Ultimate
• Has Javascript/Typescript

support

UW CSE 331 Autumn 2022 10

HW8

UW CSE 331 Autumn 2022 11

HW8 Overview

• Draw lines on a map in React
• Starter code has (most of) the pieces, but not much functionality.

– Lots of hard-coded values, placeholders (console.log
instead of doing stuff), etc..

• Your job: "wire all the pieces together"
– Accept user input
– Process/parse the data
– Error check – users do weird stuff, make sure you can't

crash
– Move data between components as necessary
– Add the actual functionality in response to user input.

• Structure:
– Top-level <App> component, with two child components.

UW CSE 331 Spring 2022 12

HW8 Component Structure

UW CSE 331 Autumn 2022 13

<Map>

<EdgeList>

<App>

Running a React App

npm: Similar to gradle, but we need to install manually the first time.

In the terminal, change directory until you're in the same place as
the "package.json" file for the project you want to run.

To Install (first time): npm install
To Run (every time): npm start

Once started, you can edit and save files and the page will
automatically reload – no need to restart. Use Control-C to shut
down when you're done developing.

UW CSE 331 Autumn 2022 14

Section Demo

UW CSE 331 Autumn 2022 15

Running The Section Demo

• Download and unzip the section demo.
• IntelliJ: File > Open…

• From the IntelliJ terminal:
– npm install

• Success!
(These warnings
are normal).

UW CSE 331 Autumn 2022 16

Running The Section Demo

• After installation finishes, run npm start

• A browser window should open up automatically

• Doesn’t work?
– Did you install the correct version (LTS)?
– Try running npm audit fix --force and then run
npm start

UW CSE 331 Autumn 2022 17

Example 1:

React Boilerplate

UW CSE 331 Autumn 2022 18

• This is a React component with minimum parts needed to
display a Hello World message.

render() {
return (

<p>Hello World</p>
);

}

Example 2:

Rendering an Array of Elements
• This shows you how to render an array of JSX Elements
• Recall:

let myParagraph: JSX.Element = <p>Hello World</p>;

render() {
let arr: JSX.Element[] = [<p>Hello World!</p>,

<p>Hola Mundo!</p>,
<p>Bonjour Monde</p>];

return (
<div>

{arr}
</div>

);
}

UW CSE 331 Autumn 2022 19

Example 2:

Rendering an Array of Elements
• What happens if you don’t put curly-braces around arr?

– It gets interpreted as plain text!
render() {

let arr: JSX.Element[] = [<p>Hello World!</p>,
<p>Hola Mundo!</p>,
<p>Bonjour Monde</p>];

return (
<div>

arr
</div>

);
}

• Curly braces { } are special syntax in JSX, used to evaluate a
JavaScript expression during compilation.

UW CSE 331 Autumn 2022 20

Example 2:

Rendering an Array of Elements

UW CSE 331 Autumn 2022 21

• When rendering any array of JSX elements, each element
needs a unique “key” prop. Keys can be anything as long as
they are unique.

render() {
let arr: JSX.Element[] = [<p key={1}>Hello World!</p>,

<p key={2}>Hola Mundo!</p>,
<p key={3}>Bonjour Monde</p>];

return (
<div>

{arr}
</div>

);
}

Example 3:

Drawing on a Map
• We will use the React Leaflet

plugin to display an interactive
map of the campus using React.

• <Map> tag: creates an instance of the map component. This
component is also provided with your HW8 starter code.

• We’re using <Map> in HW8 and HW9 to draw lines/paths on top
of images (like a map of campus!)

• <MapContainer> - Creates a container for the map with
properties such as the default position and zoom level.

• <MapLine> - Represents an edge on the map.
– Takes the source and destination coordinates as well as the

color of each edge.
– Map should be in the format provided in HW7.

UW CSE 331 Autumn 2022 22

Example 3:

Drawing on a Map

UW CSE 331 Autumn 2022 23

render() {
return (
<div>
<h1 id="app-title">Line Mapper!</h1>
<div>
<Map edgeList={[]} />

</div>
</div>

)
}

We pass in an empty array into
Map as the edgeList prop

Example 3:

Drawing on a Map
• Why did we need to pass in the edgeList prop into the Map

element? <Map edgeList={[]} />

Map.tsx:

interface MapProps {
edgeList: ColoredEdge[]; // edges to be drawn

}

class Map extends Component<MapProps, {}> {

All Map elements must have the props defined in the interface
passed in on the left.

UW CSE 331 Autumn 2022 24

Example 4:

State
• We are initializing the information about our lines in our

constructor.
– Initialize state with this.state = {…}

• We are storing our lines and the color of our lines in our state.

• App’s state in this example is never getting updated after
initialization.

UW CSE 331 Autumn 2022 25

Example 4:

State
constructor(props: any) {
super(props);
// initialize tempLines
// and color_
this.state = {
color: color_,
lines: tempLines

};
}

render() {
return (
...
<Map edgeList={this.state.lines} />

...
)

}
UW CSE 331 Autumn 2022 26

We created lines in App’s constructor,
passed them through this.state into
Map as the edgeList prop

Example 4:

State
interface AppState {

lines: ColoredEdge[];
color: string

}

class App extends Component<{}, AppState> {

App’s state object must follow the interface passed in on the right.

this.state = {};

Compiler Error: Type '{}' is missing the following properties from
type 'Readonly ': lines, color

UW CSE 331 Autumn 2022 27

Aside: Interfaces
Interfaces define what properties an object is required to have.
• Conceptually: the “shape” of an object

interface HasLabel { interface Empty {
label: string; // nothing

} }

let obj1: HasLabel = { label: "label1" };
let obj2: Empty = { label: "label2" };

console.log(obj1.label);

console.log(obj2.label);

Compiler Error: Property 'label' does not exist on type 'Empty'.

UW CSE 331 Autumn 2022 28

Example 5:

Changing State
• App still stores a current color and a list of edges

• We have 3 buttons to update the color to red, blue, or green.

• Button’s onClick event listener calls setState in App to
change the color and trigger a re-render when the button is
clicked.
– Initialize state using this.state = {...}

– Use this.setState to update the state after initialization
• Otherwise, React might not notice the state update and

not update the UI!

UW CSE 331 Autumn 2022 29

Example 5:

Changing State

UW CSE 331 Autumn 2022 30

Example 5:

Changing State
<button onClick={this.onGreenClick}>Green</button>

onGreenClick = () => {
const tempLines = this.state.lines;
for (let i in tempLines){

tempLines[i].color = "green";
}
let newState = {

color: "green",
lines: tempLines

};
this.setState(newState);

};

UW CSE 331 Autumn 2022 31

When the button is
clicked, we grab the old
state, modify it, and
then replace the old
state with our new state!

Example 5:

Changing State
React’s re-renderer watches for state updates. When it detects a
state update, a re-render is queued. It does not happen instantly,
as React might group multiple state updates in one re-render.

this.setState(someNewState)

render() {
return(
...
<div>
<Map edgeList={this.state.lines} />

</div>
...

)
} UW CSE 331 Autumn 2022 32

Queue a
re-render!

Updated state
is passed in!

Aside: Passing Functions Around

render() {
let text: string = "Hello!";
return (
<p>{text}</p>

)
}

Notice how these two are pretty much equivalent!

render() {
return (
<p>Hello!</p>

)
}

UW CSE 331 Autumn 2022 33

Aside: Passing Functions Around

onGreenClick = () => {
// function body

};

render() {
return (
<button onClick={this.onGreenClick}>Green</button>

)
}

Similarly, these two are also pretty much equivalent!

<button onClick={() => {
// function body

};
}>Green</button>

UW CSE 331 Autumn 2022 34

The version on top is
significantly cleaner.
Please use that one!

Example 6:

Children and Props
• We have a new component that puts a title above the Map,

called ColorTitle
– ColorTitleProps includes a color that it will display

• We must include ColorTitle in App’s render method

• Current color is passed to child component in props

UW CSE 331 Autumn 2022 35

Example 6:

Children and Props
We pass in this.state.color as the color prop of our
ColorTitle element.

App.tsx:
render() {
return (
<div>
...
<ColorTitle color={this.state.color} />
...

</div>
);

}
UW CSE 331 Autumn 2022 36

Example 6:

Children and Props
The ColorTitle element takes the color prop and displays it!
render() {
return (
<h1 id="app-title"

style={{color: this.props.color}}>
Your favorite color is {this.props.color}!

</h1>
);

}

UW CSE 331 Autumn 2022 37

Example 7:

Callbacks
• We factor out the three buttons into ButtonGroup

• ButtonGroup uses a callback function to notify App that a
new color has been chosen
– Remember: ButtonGroup is a child of App

• Callback function is passed in via props also

UW CSE 331 Autumn 2022 38

Example 7:

Callbacks
In our App component:

update_color = (color_: string) => {
// create newState by getting the old state and modifying
// it using the color_ parameter, then replacing the old
// state with our new state!
this.setState(newState);

}

We pass this update_color function as a prop into our
ButtonGroup element. This function updates App’s state.

<ButtonGroup onColorChange={this.update_color} />

UW CSE 331 Autumn 2022 39

Example 7:

Callbacks
In the ButtonGroup component:

onGreenClick = () => {
this.props.onColorChange("green");

};

...

render() {
return (
<div>
<button onClick={this.onGreenClick}>Green</button>
...

</div>
);

} UW CSE 331 Autumn 2022 40

When ButtonGroup’s button is
clicked, it calls onGreenClick, which
calls the callback function that we
passed in as a prop!

We pass information from
ButtonGroup to App

when we call the
callback function

Example 7:

Callbacks
update_color updates App’s state using the information
received through the color_ parameter ("green").
render() {

return (
<div>

<ButtonGroup onColorChange={this.update_color} />

<ColorTitle color={this.state.color} />
<div>

<Map edgeList={this.state.lines} />
</div>

</div>
);

}

UW CSE 331 Autumn 2022 41

When ButtonGroup’s button is clicked, it calls onGreenClick,
which calls the callback function that we passed in as a prop,
which updates App’s state, and re-renders the ColorTitle and
Map elements using App’s updated state as props!

Queue a
re-render!

The Flow

UW CSE 331 Autumn 2022 42

color

updateColor()

<button>

<button>

<button>

<App />

<Map /> <ButtonGroup /><ColorTitle />

<h1>

<MapContainer />

<MapLine />

<MapLine />

Aside: console.log output

• Kebab menu > More tools > Developer tools

console.log will get output here

UW CSE 331 Autumn 2022 43

Using React Developer Tools

• ⚛ Components Tab

• See the component structure!

• Verify the props and state!

UW CSE 331 Autumn 2022 44

Summary

• Components are reusable blocks of code that allow
modular design and proper cohesion.

• Components contain other components and HTML tags
to determine how they appear on a webpage.
– React is responsible for managing the underlying

webpage.
• Data owned/controlled by a component is stored in that

component’s state.
• Data flows down from parent to child through props.
• Data flows up from child to parent through callbacks

from the child into the parent’s code.
• React notifies components of changes to their data, and

re-renders happen accordingly.

UW CSE 331 Autumn 2022 45

